首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   5篇
  2022年   1篇
  2020年   2篇
  2017年   5篇
  2016年   3篇
  2015年   6篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Most studies of delphinid‐trawler interactions have documented the surface behavior of dolphins feeding on discarded bycatch, but not their subsurface behavior around demersal trawl gear. Using video cameras mounted inside trawl nets, we recorded the subsurface behavior of common bottlenose dolphins (Tursiops truncatus) in a demersal fish trawl fishery in northwestern Australia. Footage from 36 trawls across the fishery was analyzed to determine the extent of dolphin‐gear interactions and the behavior of dolphins inside the nets. Interaction rates were high, with dolphins present inside and outside the nets during 29 and 34 trawls, respectively, and for up to 99% of the trawl duration. The proportion of foraging behaviors exhibited inside the nets was higher than the proportions of traveling and socializing behaviors. Twenty‐nine individuals were identified inside the net, seven of which returned repeatedly within and between trawls and fishing trips, but were observed primarily in the same localized areas in which they were first recorded. Our results suggest that entering trawl nets may be a frequently occurring, yet specialized behavior exhibited by a small subset of trawler‐associated dolphins. We propose that gear modifications, not spatial or temporal adjustments to fishing effort, have the greatest potential to reduce dolphin bycatch.  相似文献   
2.
The decommissioning of offshore oil and gas platforms typically involves removing some or all of the associated infrastructure and the consequent destruction of the associated marine ecosystem that has developed over decades. There is increasing evidence of the important ecological role played by offshore platforms. Concepts such as novel ecosystems allow stakeholders to consider the ecological role played by each platform in the decommissioning process. This study focused on the Wandoo field in Northwest Australia as a case study for the application of the novel ecosystem concept to the decommissioning of offshore platforms. Stereo‐baited remote underwater video systems were used to assess the habitat composition and fish communities at Wandoo, as well as two control sites: a sandy one that resembled the Wandoo site pre‐installation, and one characterized by a natural reef as a control for natural hard substrate and vertical relief. We found denser macrobenthos habitat at the Wandoo site than at either of the control sites, which we attributed to the exclusion of seabed trawling around the Wandoo infrastructure. We also found that the demersal and pelagic taxonomic assemblages at Wandoo more closely resemble those at a natural reef than those which would likely have been present pre‐installation, but these assemblages are still unique in a regional context. The demersal assemblage is characterized by reef‐associated species with higher diversity than those at the sand control and natural reef control sites, with the pelagic community characterized by species associated with oil platforms in other regions. These findings suggest that a novel ecosystem has emerged in the Wandoo field. It is likely that many of the novel qualities of this ecosystem would be lost under decommissioning scenarios that involve partial or complete removal. This study provides an example for classifying offshore platforms as novel ecosystems.  相似文献   
3.
Aim Macroecological theory predicts that along direct physiological gradients there will be unimodal abundance distributions of species and consistent rates of assemblage turnover. However, the majority of marine studies that have investigated the realized distribution of species along latitudinal or temperature gradients have generally found unimodal distributions to be rare. We assess fish distributions along a temperature gradient in a stable oligotrophic seascape and suggest that unimodal distributions will be more common. Location Nearshore demersal fish habitat extending 1500 km along the coast of south‐western Australia. Methods The relative abundances of demersal fish species were sampled off the coast of south‐western Australia along a temperature gradient. The confounding influence of other environmental variables was tested, and the assemblage was found to be highly correlated with temperature. For the 20 most abundant species, quantile regression spline models were used to construct a model within which 95% of their abundance was expected to fall. We compared the results from this study with the proportion of unimodal species abundance distributions observed in other studies. Results Of the 20 most abundant species, 19 displayed patterns that indicated temperature was an important factor influencing their range and relative abundance; with 15 species exhibiting unimodal abundance distributions, four having ramped distribution to one end of the sampled range and one showing no consistent pattern. Main conclusions The high diversity and percentage of endemic species in terrestrial and marine habitats of south‐western Australia is likely to be due to the stable geological and oceanographic history of the region. In comparison, studies of abundance distribution in other marine systems have been conducted in relatively heterogeneous and productive environments. The old, climatically buffered, oligotrophic seascape of south‐western Australia has provided a simple system in which the consistent influence of physiological gradients on the abundance distribution of fish species can be observed.  相似文献   
4.
Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long‐term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed‐effects modeling to examine the sensitivity of growth in a long‐lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi‐decadal biochronology (1952–2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries.  相似文献   
5.
We used acoustic telemetry to describe the patterns of vertical movement, site fidelity and residency of grey reef sharks (Carcharhinus amblyrhynchos) on the outer slope of coral reefs in Palau, Micronesia, over a period of two years and nine months. We tagged 39 sharks (mostly adult females) of which 31 were detected regularly throughout the study. Sharks displayed strong inter-annual residency with greater attendance at monitored sites during summer than winter months. More individuals were detected during the day than at night. Mean depths of tagged sharks increased from 35 m in winter to 60 m in spring following an increase in water temperature at 60 m, with maximum mean depths attained when water temperatures at 60 m stabilised around 29°C. Sharks descended to greater depths and used a wider range of depths around the time of the full moon. There were also crepuscular cycles in mean depth, with sharks moving into shallower waters at dawn and dusk each day. We suggest that daily, lunar and seasonal cycles in vertical movement and residency are strategies for optimising both energetic budgets and foraging behaviour. Cyclical patterns of movement in response to environmental variables might affect the susceptibility of reef sharks to fishing, a consideration that should be taken into account in the implementation of conservation strategies.  相似文献   
6.
Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of grey reef sharks (Carcharhinus amblyrhynchos) observed by dive guides and the telemetry data at both daily and monthly intervals, suggesting that variation in relative abundance of sharks was detectable in datasets collected by dive guides in a similar manner to data derived from telemetry at these time scales. There was no correlation between the number or mean depth of sharks recorded by telemetry and the presence of tourist divers, suggesting that the behaviour of sharks was not affected by the presence of divers during our study. Data recorded by dive guides showed that current strength and temperature were important drivers of the relative abundance of sharks at monitored sites. Our study validates the use of datasets of shark abundance collected by professional dive guides in frequently-visited dive sites in Palau, and supports the participation of experienced recreational divers as contributors to long-term monitoring programs of shark populations.  相似文献   
7.

Reef sharks may be ecologically redundant, such that other mesopredatory fishes compensate for their functions when they decline in number, preventing trophic cascades. Oral jaw gape, hereafter referred to as gape, determines maximum prey size in many piscivores and therefore affects the size structure of prey assemblages. Here, we examine whether gape and maximum prey size differ between five species of reef shark and 21 species of teleost (n?=?754) using data collected from 38 reefs in the Indo-Pacific. Sharks displayed relatively small gape dimensions compared to most teleost species and, at smaller sizes, the giant trevally Caranx ignobilis and other teleosts may be able to consume larger prey than similar-sized sharks. However, ecological redundancy between reef sharks and teleosts appears to decline at larger sizes, such that the grey reef shark Carcharhinus amblyrhynchos, for example, may be capable of consuming larger prey than any other reef predator at its largest sizes, regardless of prey body shape. Moreover, sharks may be able to consume proportionally larger prey as they grow, in contrast to reef teleosts, which may largely be limited by their gapes to ever-smaller prey as a proportion of their body size. Our results also suggest that reef sharks may be unable to swallow whole prey that are >?36% of their length, consistent with gut-content studies. Conservation of reef ecological function may therefore depend not only on the protection of sharks but also particular size classes and key components of the mesopredatory guild.

  相似文献   
8.
In-water viewing of sharks by tourists has become a popular and lucrative industry. There is some concern that interactions with tourists with ecotourism operations might harm sharks through disruption of behaviours. Here, we analysed five years of whale shark (Rhincodon typus) encounter data by an ecotourism industry at Ningaloo Reef, Western Australia, to assess the impact of ecotourism interactions on shark visitation, within the context of the biological and physical oceanography of the region. Our data base consisted of 2823 encounter records for 951 individual whale sharks collected by ecotourism operators between 2007 and 2011. We found that total encounters per whale shark and encounters per boat trip increased through time. On average, whale sharks re-encountered in subsequent years were encountered earlier, stayed longer and tended to be encountered more often within a season than sharks that were only encountered in a single year. Sequential comparisons between years did not show any patterns consistent with disturbance and the rate of departure of whale sharks from the aggregation was negatively correlated to the number of operator trips. Overall, our analysis of this multi-year data base found no evidence that interactions with tourists affected the likelihood of whale shark re-encounters and that instead, physical and biological environmental factors had a far greater influence on whale shark visitation rates. Our approach provides a template for assessing the effects of ecotourism interactions and environmental factors on the visitation patterns of marine megafauna over multiple years.  相似文献   
9.
Based on 16 months of field observations on tagged seahorses Hippocampus comes in the Philippines, adults were found to be nocturnal, to maintain small home ranges, and to live mostly among corals. Prolonged pair associations suggested that H. comes , like many other seahorse species, were probably monogamous, a conclusion consistent with their low density and sparse distribution. Site and mate fidelity suggest that H. comes populations may fare poorly under current high levels of exploitation.  相似文献   
10.
The effects of climate change are difficult to predict for many marine species because little is known of their response to climate variations in the past. However, long‐term chronologies of growth, a variable that integrates multiple physical and biological factors, are now available for several marine taxa. These allow us to search for climate‐driven synchrony in growth across multiple taxa and ecosystems, identifying the key processes driving biological responses at very large spatial scales. We hypothesized that in northwest (NW) Australia, a region that is predicted to be strongly influenced by climate change, the El Niño Southern Oscillation (ENSO) phenomenon would be an important factor influencing the growth patterns of organisms in both marine and terrestrial environments. To test this idea, we analyzed existing growth chronologies of the marine fish Lutjanus argentimaculatus, the coral Porites spp. and the tree Callitris columellaris and developed a new chronology for another marine fish, Lethrinus nebulosus. Principal components analysis and linear model selection showed evidence of ENSO‐driven synchrony in growth among all four taxa at interannual time scales, the first such result for the Southern Hemisphere. Rainfall, sea surface temperatures, and sea surface salinities, which are linked to the ENSO system, influenced the annual growth of fishes, trees, and corals. All four taxa had negative relationships with the Niño‐4 index (a measure of ENSO status), with positive growth patterns occurring during strong La Niña years. This finding implies that future changes in the strength and frequency of ENSO events are likely to have major consequences for both marine and terrestrial taxa. Strong similarities in the growth patterns of fish and trees offer the possibility of using tree‐ring chronologies, which span longer time periods than those of fish, to aid understanding of both historical and future responses of fish populations to climate variation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号