首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2001年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Plasma Physics Reports - Compression of a fiber array with a deuterated target mounted on its axis is studied at the Angara-5-1 facility (3.5 MA, 100 ns). Cylindrical arrays with an initial...  相似文献   
2.
Results are presented from experimental studies of the structure of the compressed plasma of a Z-pinch produced during the implosion of a foam-wire load at the current of up to 3 MA. The foam-wire load consisted of two nested cylindrical cascades, one of which was a solid or hollow cylinder made of low-density agar-agar foam, while the other was a wire array. The wall thickness of a hollow foam cylinder was 100–200 μm. The images of the pinch and its spectrum obtained with the help of multiframe X-ray cameras and a grazing incidence spectrograph with a spatial resolution were analyzed. Data on the spatial structure of the emitting regions and the soft X-ray (SXR) spectrum of the Z-pinch in the final stage of compression of a foam-wire load were obtained. The implosion modes characterized by the formation of hot regions during implosion of such loads were revealed. The characteristic scale lengths of the hot regions were determined. It is shown that the energy distribution of SXR photons in the energy range from 80 eV to 1 keV forms the spatial structure of Z-pinch images recorded during the implosion of foam-wire loads. It is revealed that the spectral density of SXR emission in the photon energy range of 300–600 eV from hot Z-pinch regions exceeds the spectral density of radiation from the neighboring Z-pinch regions by more than one order of magnitude. Groups of lines related to the absorption and emission of radiation by atoms and multicharged ions of carbon and oxygen in the outer foam cascade of a foam-wire load were recorded for the first time by analyzing the spatial distribution of the SXR spectra of multicharged ions of the Z-pinch. The groups of absorption lines of ions (C III, O III, O IV, and O VI) corresponding to absorption of SXR photons in the Z-pinch of a tungsten wire array, which served as the inner cascade of a foam-wire load, were identified. The plasma electron temperature measured from the charge composition of carbon and oxygen ions in the outer agar-agar foam cascade was 10–40 eV. During the implosion of foam-wire loads at currents of up to 3 MA, SXR pulses (hν > 100 eV) with a duration of 10 ns and peak power of 3 TW were detected. It is shown that the temporal profile of single-peak and double-peak SXR pulses can be controlled by varying the parameters of the outer and inner cascades of the foam-wire load.  相似文献   
3.
Results are presented from experimental studies of the implosion of cylindrical kapron fiber arrays with addition of high- and medium-Z metal wires (tungsten, aluminum). The experiments were carried out on the Angara-5-1 facility at currents of 3–4 MA. The ablation rate in kapron fiber arrays is estimated and compared with that in tungsten wire arrays.  相似文献   
4.
Results are presented from measurements of the distributions of the azimuthal magnetic field in aluminum, copper, molybdenum, tungsten and other wire arrays electrically imploded at currents of up to 3 MA in the Angara-5-1 facility. It is shown that the time during which the magnetic field of the current pulse reaches the array axis depends on the material of the wires or wire coating. The current of the precursor formed on the array axis before the implosion of the main load mass is measured. It is shown that the penetration of the load material with the frozen-in magnetic field into a polymer (agar-agar) foam liner is drastically different from that in the case of a wire array. It is found that the rate of current transfer to the array axis is maximum for tungsten wire arrays. The rates of plasma production during implosion of loads made of different materials are compared.  相似文献   
5.
Results are presented from experimental studies of hard X-ray (HXR) emission in the photon energy range above 20 keV from dense radiating Z-pinch plasmas. The work is aimed at revealing the nature of fast-electron (electron beam) generation during the implosion of cylindrical and conical wire arrays in the Angara-5-1 facility at currents of up to 3 MA. It is found that the plasma implosion zippering caused by the inclination of wires affects the parameters of the HXR pulse emitted during the implosion of a conical array. It is shown that HXR emission correlates well with the decay of the plasma column near the cathode in the stagnation phase. HXR images of the pinch are produced by the bremsstrahlung of fast electrons generated during plasma column decay and interacting with plasma ions and the anode target. It is found that the use of conical arrays makes it possible to control the direction of plasma implosion zippering and the spatiotemporal and energy parameters of the pinch X-ray emission, in particular the X-ray yield. For wire array with diameters of 12 mm and linear masses of 200–400 μg/cm, the current of the fast electron beam is 20 kA and its energy is 60 J, which is about 1/500 of the energy of the main soft X-ray pulse.  相似文献   
6.
Plasma Physics Reports - The implosion of combined loads consisting of an outer wire (fiber) array and inner cylindrical target was studied experimentally at the Angara-5-1 facility (3.5 MA, 100...  相似文献   
7.
Results of experiments on the compression of tungsten wire arrays by the plasma current sheath (PCS) of the PF-3 facility at currents of up to 2 MA are presented. The efficiency of current transportation to the wire array and switching-over of the discharge current to the array were studied. Information on the penetration of the magnetic field into the wire array obtained using microprobes made it possible to compare the obtained experimental data with the results of magnetic field measurements carried out at other high-power electrophysical devices. The intensity of plasma production from tungsten wires under the action of the plasma focus PCS is estimated. The experimental results are tested against the existing models of wire array implosion with prolonged plasma production.  相似文献   
8.
A method is developed for measurements of laser radiation scattering by wires and fibers in different types of imploding arrays in the initial stage of plasma production at discharge currents per wire of up to 2 kA for aluminum arrays and up to 8 kA for tungsten arrays. The experiments were carried out on the Angara-5-1 facility at a current density in the wires of 108 A/cm2 and current growth rate of ~1013 A/s. It is found that the indicatrix of laser radiation reflected from the wires (fibers) in cylindrical and conical arrays is modified at currents of 0.1–10 kA per wire (fiber). The experimental data on the reflection and scattering of laser radiation from wires and fibers are compared with the results of numerical simulations of their electric explosion in vacuum. It is proposed that the change in the reflection indicatrix of laser radiation is caused by the onset of thermal instabilities. The typical size of density and temperature inhomogeneities on the wire surface is in a range of 10–20 μm, which probably results in a transition from specular to diffuse reflection of laser radiation. A simultaneous abrupt (over 2–3 ns) reduction in the reflection intensity from several wires of an array indicates a homogeneous distribution of the discharge current over the irradiated wires. This closes the issue of the quality of the contact between the wires and the electrodes. The obtained experimental information is of considerable importance for the development of numerical codes for simulations of the implosion of wire arrays and the refinement of the wire parameters in the initial stage of plasma production.  相似文献   
9.
Results are presented from experimental studies of the anode plasma dynamics and measurements of the ion flux ejected along the axis of a high-current Z-pinch. Pinch discharges were formed by the implosion of tungsten wire arrays in the Angara-5-1 facility. It is shown that the ion energy spectrum depends on the mass and configuration of wire arrays, as well as on the diameter of the anode aperture. The shape of the ion spectrum indicates that the plasma propagates in the form of a compact plasmoid. Shadow and X-ray images of the plasma show that the axial velocity of the plasma outflowing through the anode aperture is comparable with the velocity of radial plasma compression and, for tungsten ions, can reach a value corresponding to an energy of 100 keV. The experimental data indicate that the ion energy spectrum mainly forms due to the electrodynamical acceleration of the plasma and cumulative jets. A possible mechanism for the production of compact plasma formations in the course of electrodynamic plasma acceleration is discussed.  相似文献   
10.
Results are presented from measurements of the anisotropy of energy losses in high-current Z-pinches produced by the implosion of wire arrays at the ANGARA-5-1 facility at load currents of up to 4MA. The energy losses were measured in the radial direction and along the pinch axis from the anode side. The main diagnostics were time-integrated thermocouple calorimeters, nanosecond X-ray diodes (XRDs) with different filters, and a foil radiation calorimeter with a time resolution of 2 μs. The azimuthal anisotropy of energy losses was measured for different wire array configurations and different shapes of the high-voltage electrode. The presence of strong initial azimuthal inhomogeneity of the wire mass distribution (sectioned arrays), as well as the use of conical electrodes instead of plane ones, does not increase the azimuthal inhomogeneity of the total energy losses. For cylindrical wire arrays, energy losses in the radial direction are compared with those along the pinch axis. According to XRD and calorimetric measurements, the radiation yield per unit solid angle along the pinch axis is two to three times lower than that in the radial direction. In the axial direction, the energy flux density of the expanding plasma is two to three times lower than the radiation intensity. The measured radiation yield across the pinch is 2.5–5 kJ/sr, while that along the pinch axis is 1–2 kJ/sr. The results obtained by means of XRDs agree to within measurement errors with those obtained using the radiation calorimeter. It is found that the energy per unit solid angle carried by the expanding plasma in the radial direction does not exceed 10% of the soft X-ray yield. Analysis of the structure of time-integrated pinhole images and signals from the radial and axial XRDs shows that radiation emitted in the radial direction from the hot central region of the pinch is partially screened by the less dense surrounding plasma halo, whereas radiation emitted in the axial direction is a superposition of the emissions from the hot dense central region of the pinch and the colder less dense peripheral plasma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号