首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2019年   2篇
  2016年   1篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.

Background

Here we set out to standardize long-lasting, visually-attractive devices for Glossina swynnertoni, a vector of both human and animal trypanosomiasis in open savannah in Tanzania and Kenya, and in neighbouring conservation areas used by pastoralists. The goal was to determine the most practical device/material that would induce the strongest landing response in G. swynnertoni for use in area-wide population suppression of this fly with insecticide-impregnated devices.

Methods and Findings

Trials were conducted in wet and dry seasons in the Serengeti and Maasai Mara to measure the performance of traps and targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used as a simple enumerator at these remote locations to compare trapping efficiencies of devices. Independent of season or presence of chemical baits, targets in phthalogen blue or turquoise blue cloth with adhesive film were the best devices for capturing G. swynnertoni in all situations, catching up to 19 times more flies than pyramidal traps. Baiting with chemicals did not affect the relative performance of devices. Fly landings were two times higher on 1 m2 blue-black targets as on pyramidal traps when equivalent areas of both were covered with adhesive film. Landings on 1 m2 blue-black targets were compared to those on smaller phthalogen blue 0.5 m2 all-blue or blue-black-blue cloth targets, and to landings on all-blue plastic 0.32–0.47 m2 leg panels painted in phthalogen blue. These smaller targets and leg panels captured equivalent numbers of G. swynnertoni per unit area as bigger targets.

Conclusions

Leg panels and 0.5 m2 cloth targets show promise as cost effective devices for management of G. swynnertoni as they can be used for both control (insecticide-impregnated cloth) and for sampling (rigid plastic with insect glue or adhesive film) of populations.  相似文献   
2.
Population genetics is a convenient tool to study the population biology of non‐model and hard to sample species. This is particularly true for parasites and vectors. Heterozygote deficits and/or linkage disequilibrium often occur in such studies and detecting the origin of those (Wahlund effect, reproductive system or amplification problems) is uneasy. We used new tools (correlation between the number of times a locus is found in significant linkage disequilibrium and its genetic diversity, correlations between Wright's FIS and FST, FIS and number of missing data, FIT and allele size and standard errors comparisons) for the first time on a real data set of tsetse flies, a vector of dangerous diseases to humans and domestic animals in sub‐Saharan Africa. With these new tools, and cleaning data from null allele, temporal heterogeneity and short allele dominance effects, we unveiled the coexistence of two highly divergent cryptic clades in the same sites. These results are in line with other studies suggesting that the biodiversity of many taxa still largely remain undescribed, in particular pathogenic agents and their vectors. Our results also advocate that including individuals from different cohorts tends to bias subdivision measures and that keeping loci with short allele dominance and/or too frequent missing data seriously jeopardize parameter's estimations. Finally, separated analyses of the two clades suggest very small tsetse densities and relatively large dispersal.  相似文献   
3.

Background

In Uganda, geographical distribution of blood groups and Rhesus (D) factor varies across the country. The aim of this study was to examine the distribution of these groups among voluntary blood donors in rural southwestern Uganda.

Results

Twenty-three thousand five hundred four (23,504) blood donors were included in the study. The donors had a mean age of 21 years (SD ± 5.7) and were mainly male (73%). The distribution of ABO blood group was; blood group O (50.3%); blood group A (24.6%); blood group B (20.7%) and blood group AB (4.5%). The proportions of Rhesus (D) positive and Rhesus (D) negative were 98 and 2% respectively. The proportion of non-adult donors (<18 years) was significantly higher among the female than the male donors (p value <0.001). A significantly higher proportion of males than females were Rhesus (D) negative (p-value <0.001). No significant relationship was found between age and blood group distribution.

Conclusion

The sequence of ABO distribution among the rural population in southwestern Uganda is; O > A > B > AB, with males as the predominant donors. The frequency of Rhesus (D) negative is very low in rural southwestern Ugandan and is mainly among males. The blood bank services in southwestern Uganda need to develop innovative strategies targeting female donors who are more likely to boost blood stocks in the region.
  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号