首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
  2021年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1970年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Colony-forming cells with high proliferative potential (HPP-CFC)   总被引:12,自引:0,他引:12  
Colony-forming cells with a high proliferative potential (HPP-CFC) have been defined by their ability to form large colonies in vitro (diameters greater than 0.5 mm and containing approximately 50,000 cells) in bone marrow cell cultures. The HPP-CFC have been characterized by: 1) a relative resistance to treatment in vivo with the cytotoxic drug 5-fluorouracil, 2) a high correlation with cells capable of repopulating the bone marrow of lethally irradiated mice, 3) their multipotential ability to generate cells of the macrophage, granulocyte, megakaryocyte and erythroid lineages, and 4) their multifactor responsiveness. The HPP-CFC have been described in both mouse and human bone marrow. These properties suggest that the HPP-CFC represent an important cell type in hematopoiesis and provide a model system, particularly in the human, for studying the properties of primitive progenitor cells in vitro.  相似文献   
2.
The cDNA for stem cell factor was recently isolated from Buffalo rat liver cells (BRL-3A) and recombinant rat stem cell factor produced from Escherichia coli (rrSCF164). rrSCF164 synergizes with rhIL-7 to stimulate pre-B clonal growth in agar culture of mouse bone marrow cells, and in this study we have characterized the role of rrSCF164 in B cell development. The combination of rrSCF164 plus rhIL-7 stimulated increased colony numbers compared with the sum of colonies stimulated by rrSCF164 and rhIL-7 alone. Also, increased cell proliferation per colony was stimulated by the combination of rrSCF164 plus rhIL-7 compared with rhIL-7 or rrSCF164 alone. The colonies formed with rrSCF164 plus rhIL-7 and rhIL-7 alone contained exclusively pre-B cells, which expressed B220 Ag and cytoplasmic mu-chain, but were negative for surface Ig expression. Morphological examination of the cells in the colonies showed blast-like characteristics. rrSCF164 alone and in combination with rhIL-7 stimulated generation of B220+ cells in liquid culture of B220- cells, whereas rhIL-7 alone had no stimulatory effect on B220- cells. Both stem cell factor mRNA and bioactivity were detected in a mouse bone marrow-derived stromal cell line, termed OZ-11. We propose that stem cell factor is a stromal-derived factor that synergizes with IL-7 to stimulate the proliferation and differentiation of pro-B cells to pre-B cells, which become responsive to IL-7 alone.  相似文献   
3.
A novel indirect co-culture system was established to support ex vivo expansion of hematopoietic progenitors in umbilical cord blood (UCB) by using thrombopoietin (TPO)/Flt-3 ligand (FL)-transduced human-marrow-derived mesenchymal stem cells (tfhMSCs) as a feeder. UCB CD34+ cells were isolated and cultured by using five culture systems in serum-containing or serum-free medium. Suitable aliquots of cultured cells were taken to monitor cell production, clonogenic activity, and long-term culture-initiating culture (LTC-IC) output. Finally, the severe-combined immunodeficient mouse (SCID) repopulating cell (SRC) assay was performed to confirm the ability of the indirect co-cultured cells from the tfhMSCs system to reconstitute long-term hematopoiesis. Results showed significant differences in the number of total nucleated cells (TNCs) among the culture systems with respect to serum-containing medium or serum-free medium during 14-day culture. In addition, on day 14, the outputs of CD34+ cells, the colony-forming units (CFUs) in culture, and the CFUs in mixed colonies containing erythroid and myeloid cells and megakaryocytes in the tfhMSC indirect co-culture system were significantly enhanced. The LTC-IC assay demonstrated that the tfhMSCs indirect co-culture system had the strongest activity. The SCID-SRC assay confirmed the extensive ability of the expanded cells from the tfhMSCs indirect co-culture systems to reconstitute long-term hematopoiesis. Furthermore, polymerase chain reaction analysis demonstrated the presence of human hematopoietic cells in the bone marrow and peripheral blood cells of non-obese diabetic/SCID mice. Thus, hMSCs transduced with TPO/FL, in combination with additive cytokines, can effectively expand hematopoietic progenitors from UCB in vitro. The tfhMSC indirect co-culture system may therefore be a suitable system for ex vivo manipulation of primitive progenitor cells under non-contact culture conditions.This work was supported by the Zhejiang Scientific Foundation (no. 2003C23015).  相似文献   
4.
BACKGROUND: Multiple studies have demonstrated that 'purging' of autografts with 4-hydroperoxycyclophosphamide (4HC) or the related compound mafosfamide (Mf), to eradicate residual leukemia, produces the best results associated with autologous blood and marrow transplantation for AML. However, 4HC purging results in prolonged aplasia. Therefore, we evaluated the potential of ex vivo expansion of Mf-treated CD34+ cells from mobilized PBPC. METHODS: CD34+ cells were isolated from PBPC products and treated with 30 microg/mL Mf. The Mf-treated CD34+ cells were washed and cultured for 14 days in StemLine II-defined media containing recombinant human (rh) SCF, G-CSF and thrombopoietin (Tpo). RESULTS: Treatment with Mf resulted in 90% killing of progenitor cells (GM-CFC) but maintenance of SCID-repopulating cells (SRC). Ex vivo culture of the Mf-treated CD34+ cells resulted in decreased cell numbers (10-20% of the starting cell dose) during the first week. Nevertheless, in the second week of culture the total cell numbers expanded to approximately 20-fold above starting cell numbers and progenitor cells returned to approximately pre-treatment levels. DISCUSSION: These studies demonstrate the potential of ex vivo culture to expand both total cell numbers and progenitor cells following treatment of PBPC CD34+ cells with Mf. Clinical studies are currently being initiated to evaluate the engraftment potential of these purged and expanded products.  相似文献   
5.
Cytogeographical variability within the Phleum pratense group in the Carpathians and adjacent part of Pannonian lowland, based on 132 populations analysed by flow cytometry, is described. Only diploid and hexaploid plants were detected among 635 samples from the studied area. Diploids were found to be less frequent (127 plants, 20%) than hexaploids (508, 80%). With the exception of the single pure diploid population, diploids always co-occured with hexaploids (30 localities, 22.7%). The majority of populations (101, 76.5%) consisted of hexaploid plants. Most mixed populations occur in the Western Carpathians (26). In the Eastern Carpathians, mixed populations are much rarer, with three populations in Ukraine and one in Romania. In the Southern Carpathians, only hexaploids occur. The conventional taxonomic concept of the two species, diploid P. bertolonii and hexaploid P. pratense , was followed in spite of their sympatric occurence. Distribution maps based on chromosome number data from previous studies and on ploidy level estimates are given for both species in the studied area. The pattern of different distribution of the two taxa within the Carpathians is discussed.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 475–485.  相似文献   
6.
7.
A novel gene coding for the pre-B-cell colony-enhancing factor (PBEF) has been isolated from a human peripheral blood lymphocyte cDNA library. The expression of this gene is induced by pokeweed mitogen and superinduced by cycloheximide. It is also induced in the T-lymphoblastoid cell line HUT 78 after phorbol ester (phorbol myristate acetate) treatment. The predominant mRNA for PBEF is approximately 2.4 kb long and codes for a 52-kDa secreted protein. The 3' untranslated region of the mRNA has multiple TATT motifs, usually found in cytokine and oncogene messages. The PBEF gene is mainly transcribed in human bone marrow, liver tissue, and muscle. We have expressed PBEF in COS 7 and PA317 cells and have tested the biological activities of the conditioned medium as well as the antibody-purified protein in different in vitro assays. PBEF itself had no activity but synergized the pre-B-cell colony formation activity of stem cell factor and interleukin 7. In the presence of PBEF, the number of pre-B-cell colonies was increased by at least 70% above the amount stimulated by stem cell factor plus interleukin 7. No effect of PBEF was found with cells of myeloid or erythroid lineages. These data define PBEF as a novel cytokine which acts on early B-lineage precursor cells.  相似文献   
8.
Autophagy and DNA repair are two essential biological mechanisms that maintain cellular homeostasis. Impairment of these mechanisms was associated with several pathologies such as premature aging, neurodegenerative diseases, and cancer. Intrinsic or extrinsic stress stimuli (e.g., reactive oxygen species or ionizing radiation) cause DNA damage. As a biological stress response, autophagy is activated following insults that threaten DNA integrity. Hence, in collaboration with DNA damage repair and response mechanisms, autophagy contributes to the maintenance of genomic stability and integrity. Yet, connections and interactions between these two systems are not fully understood. In this review article, current status of the associations and crosstalk between autophagy and DNA repair systems is documented and discussed.  相似文献   
9.
Gelatinases A and B, which are members of the matrix metalloproteinase (MMP) family, play essential roles in cancer development and metastasis, as they can break down basal membranes. Therefore, the determination and inhibition of gelatinases is essential for cancer treatment. Peptides that can specifically block each gelatinase may, therefore, be useful for cancer treatment. In this study, subtractive panning was carried out using a 12-mer peptide library to identify peptides that block gelatinase A activity (MMP-2), which is a key pharmacological target. Using this method, 17 unique peptide sequences were determined. MMP-2 inhibition by these peptides was evaluated through zymogram analyses, which revealed that four peptides inhibited MMP-2 activity by at least 65%. These four peptides were synthesized and used for in vitro wound healing using human umbilical vein endothelial cells, and two peptides, AOMP12 and AOMP29, were found to inhibit wound healing by 40%. These peptides are, thus, potential candidates for MMP-2 inhibition for cancer treatment. Furthermore, our findings suggest that our substractive biopanning screening method is a suitable strategy for identifying peptides that selectively inhibit MMP-2.  相似文献   
10.

Background  

Although the clinical results of autologous chondrocyte implantation for articular cartilage defects have recently improved as a result of advanced techniques based on tissue engineering procedures, problems with cell handling and scaffold imperfections remain to be solved. A new cell-sheet technique has been developed, and is potentially able to overcome these obstacles. Chondrocyte sheets applicable to cartilage regeneration can be prepared with this cell-sheet technique using temperature-responsive culture dishes. However, for clinical application, it is necessary to evaluate the characteristics of the cells in these sheets and to identify their similarities to naive cartilage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号