首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   8篇
  159篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   9篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   7篇
  2006年   7篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   8篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   5篇
  1993年   7篇
  1992年   4篇
  1991年   4篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1970年   2篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
1.
2.
O T Jones  M G McNamee 《Biochemistry》1988,27(7):2364-2374
Interactions between lipids and the nicotinic acetylcholine receptor from Torpedo californica have been measured in reconstituted membranes containing purified receptor and defined lipids. The ability of brominated lipids to partially quench the intrinsic fluorescence of the acetylcholine receptor has been exploited to monitor contacts between the protein and the surrounding lipid. Relative binding constants for lipid binding to the protein have been quantitatively determined by measuring quenching observed in mixtures of brominated and nonbrominated lipids by use of equilibrium exchange equations developed by London and Feigenson [London, E., & Feigenson, G. W. (1981) Biochemistry 20, 1939-1948] and by Simmonds et al. [Simmonds, A. C., Rooney, E. K., & Lee, A. G. (1984) Biochemistry 23, 1432-1441]. Dioleoylphosphatidylcholine and its dibromo derivative are the two principal lipids used in the reconstituted membranes to establish the quenching parameters. Competition studies between cholesterol and phosphatidylcholine indicate that cholesterol does not compete effectively for the phospholipid sites presumed to surround the membrane-embedded portions of the receptor (annular lipids). However, dibromocholesterol partially quenches the receptor and leads to additional quenching of receptor in pure dibromophosphatidylcholine membranes. The results are consistent with the presence of additional binding sites for cholesterol that are not accessible to phospholipids (nonannular sites). Similar results are obtained by using cholesterol hemisuccinate and its dibromo analogue, both of which can be introduced into membranes more easily than cholesterol because of their greater solubility in water. Fatty acids appear to compete for both annular and nonannular sites, and analysis of the quenching data suggests that there are 5-10 nonannular sites associated with the receptor. Cholesterol has been shown to play a critical role in both acetylcholine receptor structural stabilization and ion channel activity, and the results presented here provide additional information about cholesterol-receptor interactions.  相似文献   
3.
T M Fong  M G McNamee 《Biochemistry》1986,25(4):830-840
Protein-lipid interactions were studied by using Torpedo californica acetylcholine receptor (AChR) as a model system by reconstituting purified AChR into membranes containing various synthetic lipids and native lipids. AChR function was determined by measuring two activities at 4 degrees C: (1) low to high agonist affinity-state transition of AChR in the presence of an agonist (carbamylcholine) in either membrane fragments or sealed vesicles and (2) ion-gating activity of AChR-containing vesicles in response to carbamylcholine. Sixteen samples were examined, each containing different lipid compositions including phosphatidylcholine, cholesterol, phosphatidic acid, phosphatidylethanolamine, asolectin, neutral lipid depleted asolectin, native lipids, and cholesterol-depleted native lipids. Phosphatidylcholines with different configurations of fatty acyl chains were used. The dynamic structures of these membranes were probed by incorporating spin-labeled fatty acid into AChR-containing vesicles and measuring the order parameters. It was found that both aspects of AChR function were highly dependent on the lipid environment even though carbamylcholine binding itself was not affected. An appropriate membrane fluidity was necessarily required to allow the interconversion between the low and high affinity states of AChR. An optimal fluidity hypothesis is proposed to account for the conformational transition properties of membrane proteins. In addition, the conformational change was only a necessary, but not sufficient, condition for the AChR-mediated ion flux activity. Among membranes in which AChR manifested the affinity-state transition, only those containing both cholesterol and negatively charged phospholipids (such as phosphatidic acid) retained the ion-gating activity.  相似文献   
4.
5.
In this study we examined the impact of systemic treatment with the long-acting brain penetrant β2-adrenoceptor agonist clenbuterol on NFκB activity and IκB expression in rat brain. Clenbuterol decreased NFκB activity (p65 DNA binding) in nuclear extracts prepared from rat cortex and hippocampus for up to 8 h following a single treatment. This was accompanied by increased expression of IκBα mRNA and protein. The temporal increase in IκB protein expression paralleled the suppression of NFκB activity, suggesting that IκBα mediates the suppression NFκB activity observed. These actions of clenbuterol were prevented by pre-treatment with the non-selective β-adrenoceptor antagonist propranolol, the β2-adrenoceptor antagonist ICI-118,551, but not the β1-adrenoceptor antagonist metoprolol, suggesting that the effects of clenbuterol on IκBα expression and NFκB activity are mediated specifically by the β2-adrenoceptor. In addition, the actions of clenbuterol were mimicked by systemic administration of another highly selective long-acting β2-adrenoceptor agonist formoterol. As neurodegenerative diseases are associated with inflammation we determined if clenbuterol could suppress NFκB activation that occurs in response to an inflammatory stimulus. In this regard we demonstrate that clenbuterol inhibited IκB phosphorylation and IκB degradation and inhibited NFκB activity in hippocampus and cortex of rats following a central injection of the inflammagen bacterial lipopolysaccharide (LPS). In tandem, clenbuterol blocked expression of the NFκB-inducible genes TNF-α and ICAM-1 following LPS administration. Our finding that clenbuterol and formoterol inhibit NFκB activity in the CNS further supports the idea that β2-adrenoceptors may be an attractive target for treating neuroinflammation and combating inflammation-related neurodegeneration.  相似文献   
6.
Extracellular vesicles (EVs) have potential as minimally invasive biomarkers. However, the methods most commonly used for EV retrieval rely on ultracentrifugation, are time-consuming, and unrealistic to translate to standard-of-care. We sought a method suitable for EV separation from blood that could be used in patient care. Sera from breast cancer patients and age-matched controls (n = 27 patients; n = 36 controls) were analysed to compare 6 proposed EV separation methods. The EVs were then characterised on 8 parameters. The selected method was subsequently applied to independent cohorts of sera (n = 20 patients; n = 20 controls), as proof-of-principle, investigating EVs’ gremlin-1 cargo. Three independent runs with each method were very reproducible, within each given method. All isolates contained EVs, although they varied in quantity and purity. Methods that require ultracentrifugation were not superior for low volumes of sera typically available in routine standard-of-care. A CD63/CD81/CD9-coated immunobead-based method was most suitable based on EV markers'' detection and minimal albumin and lipoprotein contamination. Applying this method to independent sera cohorts, EVs and their gremlin-1 cargo were at significantly higher amounts for breast cancer patients compared to controls. In conclusion, CD63/CD81/CD9-coated immunobeads may enable clinical utility of blood-based EVs as biomarkers.  相似文献   
7.
Fourier transform infrared spectroscopy is used to characterize specific interactions between negatively charged lipids, such as phosphatidic acid, and the purified nicotinic acetylcholine receptor from Torpedo californica. The specific interaction of phosphatidic acid with acetylcholine receptor is demonstrated by the receptor-induced perturbation of the lipid ionization state, which is monitored using Fourier transform infrared bands arising from the phosphate head group. The acetylcholine receptor shifts the pKa of phosphatidic acid molecules adjacent to the receptor to a lower value by almost 2 pH units from 8.5 to 6.6. Decreased pH also leads to changes in ion channel function and to changes in the secondary structure of the acetylcholine receptor in membranes containing ionizable phospholipids. Phospholipase D restores functional activity of acetylcholine receptor reconstituted in an unfavorable environment containing phosphatidylcholine by generating phosphatidic acid. Lipids such as phosphatidic acid may serve as allosteric effectors for membrane protein function and the lipid-protein interface could be a site for activity-dependent changes that lead to modulation of synaptic efficacy.  相似文献   
8.
Gap junction communication in some cells has been shown to be inhibited by pp60v-src, a protein tyrosine kinase encoded by the viral oncogene v-src. The gap junction protein connexin43 (Cx43) has been shown to be phosphorylated on serine in the absence of pp60v-src and on both serine and tyrosine in cells expressing pp60v-src. However, it is not known if the effect of v-src expression on communication results directly from tyrosine phosphorylation of the Cx43 or indirectly, for example, by activation of other second-messenger systems. In addition, the effect of v-src expression on communication based on other connexins has not been examined. We have used a functional expression system consisting of paired Xenopus oocytes to examine the effect of v-src expression on the regulation of communication by gap junctions comprised of different connexins. Expression of pp60v-src completely blocked the communication induced by Cx43 but had only a modest effect on communication induced by connexin32 (Cx32). Phosphoamino acid analysis showed that pp60v-src induced tyrosine phosphorylation of Cx43, but not Cx32. A mutation replacing tyrosine 265 of Cx43 with phenylalanine abolished both the inhibition of communication and the tyrosine phosphorylation induced by pp60v-src without affecting the ability of this protein to form gap junctions. These data show that the effect of pp60v-src on gap junctional communication is connexin specific and that the inhibition of Cx43-mediated junctional communication by pp60v-src requires tyrosine phosphorylation of Cx43.  相似文献   
9.
The Peranakan Chinese are culturally unique descendants of immigrants from China who settled in the Malay Archipelago ∼300–500 years ago. Today, among large communities in Southeast Asia, the Peranakans have preserved Chinese traditions with strong influence from the local indigenous Malays. Yet, whether or to what extent genetic admixture co-occurred with the cultural mixture has been a topic of ongoing debate. We performed whole-genome sequencing (WGS) on 177 Singapore (SG) Peranakans and analyzed the data jointly with WGS data of Asian and European populations. We estimated that Peranakan Chinese inherited ∼5.62% (95% confidence interval [CI]: 4.76–6.49%) Malay ancestry, much higher than that in SG Chinese (1.08%, 0.65–1.51%), southern Chinese (0.86%, 0.50–1.23%), and northern Chinese (0.25%, 0.18–0.32%). A sex-biased admixture history, in which the Malay ancestry was contributed primarily by females, was supported by X chromosomal variants, and mitochondrial (MT) and Y haplogroups. Finally, we identified an ancient admixture event shared by Peranakan Chinese and SG Chinese ∼1,612 (95% CI: 1,345–1,923) years ago, coinciding with the settlement history of Han Chinese in southern China, apart from the recent admixture event with Malays unique to Peranakan Chinese ∼190 (159–213) years ago. These findings greatly advance our understanding of the dispersal history of Chinese and their interaction with indigenous populations in Southeast Asia.  相似文献   
10.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号