首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   2篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2012年   2篇
  2009年   2篇
  1999年   1篇
  1983年   1篇
  1976年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Aedes aegypti feeding on chickens infected with Plasmodium gallinaceum take less blood and lay fewer eggs than those feeding on uninfected hosts. Both activities show an inverse correlation with the degree of parasitemia. Mosquitoes feeding on infected chickens ingest blood in amounts directly proportional to the length of time spent on the hosts, whereas there is no relationship between host contact and blood meal size for mosquitoes feeding on uninfected hosts. Feeding and probing choice experiments demonstrate that infected chickens are less attractive to Aedes aegypti than uninfected chickens.  相似文献   
2.

Winter is a challenging period for aquatic research—weather is uncomfortable, ice is hazardous, equipment fails, and daylength is short. Consequently, until recently relatively little research on freshwater fishes has included winter. Telemetry methods for tracking fish and observing movement behavior are an obvious solution to working in harsh conditions because much of the data can be collected remotely, and passive methods collect data year-round without winter maintenance. Yet, many telemetry studies do not collect data during winter or, if they do, only report data from the ice-free seasons while the remaining data are unused. Here, we briefly summarize the advantages and limitations of using telemetry methods in winter, including acoustic and radio telemetry and passive integrated transponder technology, then review the range of questions related to fish ecology, behavior, bioenergetics, and habitat use that can be addressed in winter using telemetry. Our goals are to highlight the untapped potential of winter fish biology and to motivate scientists to revisit their four-season telemetry data and incorporate objectives specific to winter biology in future study plans.

  相似文献   
3.
Greenland shark Somniosus microcephalus is a potentially important yet poorly studied cold-water species inhabiting the North Atlantic and Arctic Oceans. Broad-scale changes in the Arctic ecosystem as a consequence of climate change have led to increased attention on trophic dynamics and the role of potential apex predators such as S. microcephalus in the structure of Arctic marine food webs. Although Nordic and Inuit populations have caught S. microcephalus for centuries, the species is of limited commercial interest among modern industrial fisheries. Here, the limited historical information available on S. microcephalus occurrence and ecology is reviewed and new catch, biological and life-history information from the Arctic and North Atlantic Ocean region is provided. Given the considerable by-catch rates in high North Atlantic Ocean latitudes it is suggested that S. microcephalus is an abundant predator that plays an important, yet unrecognized, role in Arctic marine ecosystems. Slow growth and large pup sizes, however, may make S. microcephalus vulnerable to increased fishing pressure in a warming Arctic environment.  相似文献   
4.
  1. Teleost fishes occupy a range of ecosystem, and habitat types subject to large seasonal fluctuations. Temperate fishes, in particular, survive large seasonal shifts in temperature, light availability, and access to certain habitats. Mobile species such as lake trout (Salvelinus namaycush) can behaviorally respond to seasonal variation by shifting their habitat deeper and further offshore in response to warmer surface water temperatures during the summer. During cooler seasons, the use of more structurally complex nearshore zones by lake trout could increase cognitive demands and potentially result in a larger relative brain size during those periods. Yet, there is limited understanding of how such behavioral responses to a seasonally shifting environment might shape, or be shaped by, the nervous system.
  2. Here, we quantified variation in relative brain size and the size of five externally visible brain regions in lake trout, across six consecutive seasons in two different lakes. Acoustic telemetry data from one of our study lakes were collected during the study period from a different subset of individuals and used to infer relationships between brain size and seasonal behaviors (habitat use and movement rate).
  3. Our results indicated that lake trout relative brain size was larger in the fall and winter compared with the spring and summer in both lakes. Larger brains coincided with increased use of nearshore habitats and increased horizontal movement rates in the fall and winter based on acoustic telemetry. The telencephalon followed the same pattern as whole brain size, while the other brain regions (cerebellum, optic tectum, olfactory bulbs, and hypothalamus) were only smaller in the spring.
  4. These findings provide evidence that flexibility in brain size could underpin shifts in behavior, which could potentially subserve functions associated with differential habitat use during cold and warm seasons and allow fish to succeed in seasonally variable environments.
  相似文献   
5.
Stable nitrogen (δ15N) and carbon (δ13C) isotopes of Atlantic sharpnose shark Rhizoprionodon terraenovae embryos and mothers were analysed. Embryos were generally enriched in 15N in all studied tissue relative to their mothers' tissue, with mean differences between mother and embryo δ15N (i.e. Δδ15N) being 1·4‰ for muscle, 1·7‰ for liver and 1·1‰ for cartilage. Embryo muscle and liver were enriched in 13C (both Δδ13C means = 1·5‰) and embryo cartilage was depleted (Δδ13C mean = ?1·01‰) relative to corresponding maternal tissues. While differences in δ15N and δ13C between mothers and their embryos were significant, muscle δ15N values indicated embryos to be within the range of values expected if they occupied a similar trophic position as their respective mothers. Positive linear relationships existed between embryo total length (LT) and Δδ15N for muscle and liver and embryo LT and Δδ13C for muscle, with those associations possibly resulting from physiological differences between smaller and larger embryos or differences associated with the known embryonic nutrition shift (yolk feeding to placental feeding) that occurs during the gestation of this placentatrophic species. Together these results suggest that at birth, the δ15N and δ13C values of R. terraenovae are likely higher than somewhat older neonates whose postpartum feeding habits have restructured their isotope profiles to reflect their postembryonic diet.  相似文献   
6.
Rescaling the trophic structure of marine food webs   总被引:1,自引:0,他引:1  
Measures of trophic position (TP) are critical for understanding food web interactions and human‐mediated ecosystem disturbance. Nitrogen stable isotopes (δ15N) provide a powerful tool to estimate TP but are limited by a pragmatic assumption that isotope discrimination is constant (change in δ15N between predator and prey, Δ15N = 3.4‰), resulting in an additive framework that omits known Δ15N variation. Through meta‐analysis, we determine narrowing discrimination from an empirical linear relationship between experimental Δ15N and δ15N values of prey consumed. The resulting scaled Δ15N framework estimated reliable TPs of zooplanktivores to tertiary piscivores congruent with known feeding relationships that radically alters the conventional structure of marine food webs. Apex predator TP estimates were markedly higher than currently assumed by whole‐ecosystem models, indicating perceived food webs have been truncated and species‐interactions over simplified. The scaled Δ15N framework will greatly improve the accuracy of trophic estimates widely used in ecosystem‐based management.  相似文献   
7.
Evaluating tissue fractionation between mothers and their offspring is fundamental for informing our interpretation of stable isotope values in young individuals and can provide insight into the dynamics of maternal provisioning. The objectives of this study were to investigate the isotopic relationships between maternal reproductive (i.e., yolk, yolk-sac placenta) and somatic tissues (i.e., muscle and liver) relative to embryos in the Bonnethead Shark Sphyrna tiburo, to evaluate the fractionation of stable carbon (δ13C) and nitrogen (δ15N) isotopes between these tissues. Additionally, we examined intra-uterine variability in the isotopic relationships to ascertain whether this species may exhibit variable nutrient allocation. Embryos showed similar magnitudes of enrichment in 13C (i.e., Δδ13C, difference between adult and embryo) relative to adult tissues (Δδ13C?=?~1.0‰). However, embryos were depleted in 15N relative to adult muscle tissues (Δδ15N?=??1.0‰), a finding that contrasts Δδ15N values reported for other placentotrophic sharks. Embryo-muscle Δδ15N was correlated with length, supporting the contention that the magnitude of enrichment between embryonic and maternal tissues results from the shift from yolk to placental feeding. Embryo δ15N and Δδ15N values showed significant intra-uterine variability; a result not observed for δ13C and Δδ13C values. The contrasting patterns in fractionation among placentotrophic sharks highlight the importance of evaluating these relationships across elasmobranch taxa with consideration for different tissues, reproductive strategies and stages of gestation. The divergent findings support future evaluation of stable isotope relationships between mothers and offspring for purposes of estimating inherent isotopic variability and how this variability may inform physiological and dietary mechanisms.  相似文献   
8.
Stable-isotope analysis (SIA) can act as a powerful ecological tracer with which to examine diet, trophic position and movement, as well as more complex questions pertaining to community dynamics and feeding strategies or behaviour among aquatic organisms. With major advances in the understanding of the methodological approaches and assumptions of SIA through dedicated experimental work in the broader literature coupled with the inherent difficulty of studying typically large, highly mobile marine predators, SIA is increasingly being used to investigate the ecology of elasmobranchs (sharks, skates and rays). Here, the current state of SIA in elasmobranchs is reviewed, focusing on available tissues for analysis, methodological issues relating to the effects of lipid extraction and urea, the experimental dynamics of isotopic incorporation, diet-tissue discrimination factors, estimating trophic position, diet and mixing models and individual specialization and niche-width analyses. These areas are discussed in terms of assumptions made when applying SIA to the study of elasmobranch ecology and the requirement that investigators standardize analytical approaches. Recommendations are made for future SIA experimental work that would improve understanding of stable-isotope dynamics and advance their application in the study of sharks, skates and rays.  相似文献   
9.
We provide preliminary carbon (δ13C) and nitrogen (δ15N) stable isotope assessment of the Greenland halibut (Reinhardtius hippoglossoides) diet in Cumberland Sound, with focus on two possible prey sources: pelagic represented by capelin (Mallotus villosus) and epibenthic represented by shrimp (Lebbeus polaris). The δ13C for the Greenland halibut stock indicated a pelagic carbon source in Cumberland Sound while stable isotope mixing models, IsoSource and MixSIR, indicated a 99% dietary composition of capelin relative to the shrimp. The δ15N did not vary across Greenland halibut size ranges and placed them at a fourth trophic position relative to a primary herbivore. This study provides the starting point for more elaborate Cumberland Sound research on the local Greenland halibut feeding ecology by confirming pelagic feeding and establishing relative trophic position as well as identifying stable isotopes as a useful tool for the study of diet in cold water fish species.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号