首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   3篇
  1969年   1篇
  1966年   1篇
  1931年   1篇
排序方式: 共有78条查询结果,搜索用时 390 毫秒
1.
A fucolipid that carried human blood group Lea activity was isolated from human small intestine. It contianed fucose, galactose, N-acetyl glucosamine, glucose, and ceramide in a molar ratio of 1:2:1:1:1. After periodate oxidation only 1 molecule of galactose and the N-acetylglucosamine remained. Permethylation of the lipid gave derivatives of a terminal fucose and galactose residue together with 2,4,6-tri-O-methylgalactose and 2,3,6-tri-O-methylglucose. After removal of fucose the lipid could be converted to a ceramide trihexoside with beta-galactosidase, and this, in turn, to ceramide lactoside by the action of beta-N-acetylhexosaminidase. Both enzymes converted the defucosylated derivative to a ceramide monohexoside. The methylated and the methylated and reduced derivatives of the intact lipid gave ions in mass spectrometry for a terminal hexose and deoxyhexose, a terminal trisaccharide of hexose, deoxyhexose and N-acetylhexosamine, and terminal tetra-and pentasaccharides. Ceramide fragments characteristic of hydroxy fatty acids with 16, 22, 23, and 24 carbons were found together with those of phytospingosine as the major long chain base. On the basis of these results and the immunologic activity of the fucolipid, the following structure is proposed: betaGal (1 leads to 3)betaGlcNAc (1 leads to 3)betaGal (1 leads to 4)Glc-ceramide alphaFuc (1 leads to 4).  相似文献   
2.
Treatment of patients diagnosed as schizophrenic with antipsychotic drugs (neuroleptics) is known to cause occasional unexplained depletion of white blood cells, especially neutrophil granulocytes. It has been known for many years that neuroleptics can interfere with the mitochondrial respiratory chain in vitro. Because there has been a growing interest recently in mitochondrial targeting of drugs, and since a quantitative structure-activity relationship (QSAR) model that predicts mitochondrial accumulation of neuroleptics has been published, we investigated the effects of neuroleptics on white blood cell mitochondria. Venous blood samples were collected from both patients undergoing treatment with neuroleptics and healthy volunteers. The samples were processed for transmission electron microscopy. The resulting images of white blood cells were analyzed using stereology to compare quantitatively mitochondrial morphology in the patient and control groups. We found that in patients, but not in controls, there was swelling of mitochondria and fragmentation of the mitochondrial cristae. There also were fewer mitochondria in patients than in controls, although due to the swelling of the organelles, the volume density of mitochondria in the two groups was not significantly different. Such changes are typical of a toxic insult. Consequently, it seems plausible that, since schizophrenia is not a disease considered to affect white blood cells per se, these changes probably are due to the medication.  相似文献   
3.
Low bone mass and increased fracture risk are recognized complications of cystic fibrosis (CF). CF-related bone disease (CFBD) is characterized by uncoupled bone turnover—impaired osteoblastic bone formation and enhanced osteoclastic bone resorption. Intestinal malabsorption, vitamin D deficiency and inflammatory cytokines contribute to CFBD. However, epidemiological investigations and animal models also support a direct causal link between inactivation of skeletal cystic fibrosis transmembrane regulator (CFTR), the gene that when mutated causes CF, and CFBD. The objective of this study was to examine the direct actions of CFTR on bone. Expression analyses revealed that CFTR mRNA and protein were expressed in murine osteoblasts, but not in osteoclasts. Functional studies were then performed to investigate the direct actions of CFTR on osteoblasts using a CFTR knockout (Cftr−/−) mouse model. In the murine calvarial organ culture assay, Cftr−/− calvariae displayed significantly less bone formation and osteoblast numbers than calvariae harvested from wildtype (Cftr+/+) littermates. CFTR inactivation also reduced alkaline phosphatase expression in cultured murine calvarial osteoblasts. Although CFTR was not expressed in murine osteoclasts, significantly more osteoclasts formed in Cftr−/− compared to Cftr+/+ bone marrow cultures. Indirect regulation of osteoclastogenesis by the osteoblast through RANK/RANKL/OPG signaling was next examined. Although no difference in receptor activator of NF-κB ligand (Rankl) mRNA was detected, significantly less osteoprotegerin (Opg) was expressed in Cftr−/− compared to Cftr+/+ osteoblasts. Together, the Rankl:Opg ratio was significantly higher in Cftr−/− murine calvarial osteoblasts contributing to a higher osteoclastogenesis potential. The combined findings of reduced osteoblast differentiation and lower Opg expression suggested a possible defect in canonical Wnt signaling. In fact, Wnt3a and PTH-stimulated canonical Wnt signaling was defective in Cftr−/− murine calvarial osteoblasts. These results support that genetic inactivation of CFTR in osteoblasts contributes to low bone mass and that targeting osteoblasts may represent an effective strategy to treat CFBD.  相似文献   
4.
5.
6.
Selective small-molecule inhibitors represent powerful tools for the dissection of complex biological processes. ES(I) (eeyarestatin I) is a novel modulator of ER (endoplasmic reticulum) function. In the present study, we show that in addition to acutely inhibiting ERAD (ER-associated degradation), ES(I) causes production of mislocalized polypeptides that are ubiquitinated and degraded. Unexpectedly, our results suggest that these non-translocated polypeptides promote activation of the UPR (unfolded protein response), and indeed we can recapitulate UPR activation with an alternative and quite distinct inhibitor of ER translocation. These results suggest that the accumulation of non-translocated proteins in the cytosol may represent a novel mechanism that contributes to UPR activation.  相似文献   
7.
Treatment of patients diagnosed as schizophrenic with antipsychotic drugs (neuroleptics) is known to cause occasional unexplained depletion of white blood cells, especially neutrophil granulocytes. It has been known for many years that neuroleptics can interfere with the mitochondrial respiratory chain in vitro. Because there has been a growing interest recently in mitochondrial targeting of drugs, and since a quantitative structure-activity relationship (QSAR) model that predicts mitochondrial accumulation of neuroleptics has been published, we investigated the effects of neuroleptics on white blood cell mitochondria. Venous blood samples were collected from both patients undergoing treatment with neuroleptics and healthy volunteers. The samples were processed for transmission electron microscopy. The resulting images of white blood cells were analyzed using stereology to compare quantitatively mitochondrial morphology in the patient and control groups. We found that in patients, but not in controls, there was swelling of mitochondria and fragmentation of the mitochondrial cristae. There also were fewer mitochondria in patients than in controls, although due to the swelling of the organelles, the volume density of mitochondria in the two groups was not significantly different. Such changes are typical of a toxic insult. Consequently, it seems plausible that, since schizophrenia is not a disease considered to affect white blood cells per se, these changes probably are due to the medication.  相似文献   
8.
9.
The DNA backbone is often considered a track that allows long-range sliding of DNA repair enzymes in their search for rare damage sites in DNA. A proposed exemplar of DNA sliding is human 8-oxoguanine (oG) DNA glycosylase 1 (hOGG1), which repairs mutagenic oG lesions in DNA. Here we use our high-resolution molecular clock method to show that macroscopic 1D DNA sliding of hOGG1 occurs by microscopic 2D and 3D steps that masquerade as sliding in resolution-limited single-molecule images. Strand sliding was limited to distances shorter than seven phosphate linkages because attaching a covalent chemical road block to a single DNA phosphate located between two closely spaced damage sites had little effect on transfers. The microscopic parameters describing the DNA search of hOGG1 were derived from numerical simulations constrained by the experimental data. These findings support a general mechanism where DNA glycosylases use highly dynamic multidimensional diffusion paths to scan DNA.  相似文献   
10.
We previously described an enrichment-immunoassay utilizing a T6 monoclonal antibody capture enzyme-linked immunosorbent assay. Here we evaluated it for the rapid screening for Salmonella in fishmeal obtained from the national Animal and Plant Quarantine service in the People's Republic of China. In this method, the number of Salmonella present is first expanded by appropriate enrichment cultures, and the pathogens are then directly detected by the T6 immunoassay. In a total of 94 enrichment cultures of fishmeal, we obtained an overall concordance of 98% between the results obtained in parallel by this method and by conventional test method. The positive prediction by this method was 92% and the negative prediction was 100%. The turn around time for the new test was 27 h which is a significant improvement from the turn around time exceeding 96 h required for the conventional test method. This test proved to be compatible with the routine work flow in the practical setting of a quarantine laboratory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号