首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   5篇
  2021年   4篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   5篇
  2012年   12篇
  2011年   7篇
  2010年   8篇
  2009年   10篇
  2008年   4篇
  2007年   8篇
  2006年   11篇
  2005年   12篇
  2004年   4篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1987年   3篇
  1985年   4篇
  1984年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1963年   1篇
  1961年   2篇
  1960年   1篇
  1957年   3篇
  1948年   1篇
  1943年   1篇
  1934年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
1.
Low-angle laser-light scattering (LALLS) was employed to measure the absolute molecular weight of chicken liver NAD+ kinase (NADK). The weight-average molecular weight (Mw) was found to be 275 000 +/- 15 000. The corresponding value for the second virial coefficient was -1.65 X 10(-3) ml X mol X g2. The value for Mw is in close accord with estimates reported for pigeon liver (270 000) and C. utilis (260 000) NADK. If the active enzyme is a dimer, the weight difference between pigeon/chicken liver and rabbit liver (136 000) NADK would indicate that the latter enzyme is an active monomer unit.  相似文献   
2.
3.
Nuclear DNA was extracted from each of the eight species comprising the Drosophila melanogaster species subgroup. Southern hybridization of this DNA by using a molecular probe specific for the alpha-amylase coding region showed that the duplicated structure of the amylase locus, first found in D. melanogaster, is conserved among all species of the melanogaster subgroup. Evidence is also presented for the concerted evolution of the duplicated genes within each species. In addition, it is shown that the glucose repression of amylase gene expression, which has been extensively studied in D. melanogaster, is not confined to this species but occurs in all eight members of the species subgroup. Thus, both the duplicated gene structure and the glucose repression of Drosophila amylase gene activity are stable over extended periods of evolutionary time.   相似文献   
4.
An ion-pair, reverse-phase, high-performance liquid chromatography method of assay was developed and used in a series of rate studies carried out with the enzyme chicken liver NAD+ kinase (ATP:NAD+ 2'-phosphotransferase, EC 2.7.1.23). Complete separation of all products and reactants was achieved within 15 min. ATP, NAD+, ADP, and NADP+ were monitored at 260 nm as they eluted from a Zorbax (Dupont) ODS (4.6 X 250-mm) column using an acetonitrile and 0.01 mM NH4(H2PO4)/0.005 M tetrabutylammonium phosphate (pH 7.0) gradient. The enzyme shows a marked preference for ATP (and dATP) and Mg2+ (or Mn2+) relative to other trinucleotides and divalent metal ions. It exhibits residual adenylate kinase and ATPase activity, but no NADH kinase activity. When polyphosphate replaced ATP, NADP+ production dropped to 2.5%. The addition of Ca2+ and/or bovine brain calmodulin did not significantly enhance the rate of NADP+ production.  相似文献   
5.
Ca2+/calmodulin-dependent protein kinase II, an abundant brain protein proposed to mediate a number of Ca2+-regulated processes in neuronal tissue, is composed of autophosphorylatable subunits of Mr 50,000 and 60,000/58,000. A recent study (McGuinness, T. L., Lai, Y., Greengard, P., Woodgett, J.R., and Cohen, P. (1983) FEBS Lett. 163, 329-334) suggested that this kinase exists as isozymes which vary in the relative ratio of these subunits in different tissues or species. Other studies (Walaas, S. I., Nairn, A. C., and Greengard, P. (1983) J. Neurosci. 3, 291-301, 302-311) provided evidence which suggested that the ratio of these phosphopeptides might vary in different brain regions. In the present investigation, we have tested this possibility by comparing Ca2+/calmodulin-dependent protein kinase II purified from rat forebrain and cerebellum. The two kinases had similar purification characteristics, subunit compositions, physical properties, and substrate specificities. Gel filtration and sucrose density gradient centrifugation provided an estimated molecular weight of 550,000 for the forebrain kinase and 615,000 for the cerebellar kinase. The kinases from the two regions clearly differed in the relative proportions of the Mr 50,000 and 60,000/58,000 subunits. Three independent methods indicated that the forebrain kinase contained the Mr 50,000/(60,000/58,000) subunits in approximately a 3:1 ratio, while the cerebellar kinase contained the Mr 50,000/(60,000/58,000) subunits in approximately a 1:4 ratio. The forebrain kinase subunits were shown to be identical to the corresponding subunits of the cerebellar kinase by several criteria. The data are consistent with the existence in various brain regions of isozymic forms of Ca2+/calmodulin-dependent protein kinase II which differ in their relative subunit ratios.  相似文献   
6.
A new covalent mitomycin C-DNA adduct (4) was isolated from DNA exposed to reductively activated mitomycin C (MC) in vitro. The MC-treated DNA was hydrolyzed enzymatically under certain conditions, and the new adduct was isolated from the hydrolysate by HPLC. Its structure was determined by ultraviolet and circular dichroism spectroscopy and chemical and enzymatic transformations conducted on microscale. In the structure, a single 2" beta, 7"-diaminomitosene residue is linked bifunctionally to two guanines in the dinucleoside phosphate d(GpG). The guanines are linked at their N2 atoms to the C1" and C10" positions of the mitosene, respectively. A key to the structure was a finding that removal of the mitosene from the adduct by hot piperidine yielded d(GpG); another was that the adduct was slowly converted to the known interstrand cross-link adduct 3 by snake venom diesterase and alkaline phosphatase. Adduct 4 represents an intrastrand cross-link in DNA formed by MC. Of the two possible strand-polarity isomers of 4, 4a in which the mitosene 1"-position is linked to the 3'-guanine of d(GpG) is designated as the proper structure, on the basis of the mechanism of the cross-linking reaction. The same adduct 4 was isolated from poly(dG).poly(dC), synthetic oligonucleotides containing the GpG sequence, and Micrococcus luteus and calf thymus DNAs. The relative yields of interstrand and intrastrand cross-links (3 and 4) were determined under first-order kinetic conditions; an average 3.6-fold preference for the formation of 3 over that of 4 was observed. An explanation for this preference is proposed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
7.
Steady-state kinetic studies including initial velocity for mannitol oxidation and fructose reduction and product inhibition for mannitol oxidation using fructose and reduced nicotinamide adenine dinucleotide (NADH) are in accord with a reaction mechanism best described as ordered Bi-Bi with NAD+ and NADH designated as the first substrate, last product, respectively at pH 8.8. All replots of slopes and intercepts from product inhibition studies were linear. Dead-end inhibition studies using mannitol 1-phosphate gave slope-parabolic, intercept-linear noncompetitive inhibition for both NAD+ and mannitol as substrates. The dead-end inhibitor is capable of binding multiply to the E, EA, and EQ forms of the enzyme to an extent that is controlled by the concentration of substrates. The EQ complex is inferred to undergo a conformational change, E'Q equilibrium EQ, since (V1/E1) greater than (KiqV2)/(KqE1), and no evidence for dead-end complex formation with NADH can be adduced. This is interpreted to mean that the release of fructose from the central complex is faster than the isomerization of the E-NADH complex. When mannitol is saturating, the noncompetitive inhibition against NAD+, as the variable substrate, becomes parabolic uncompetitive. A replot of the slopes of the parabola against mannitol 1-phosphate remains concave upward. This situation could arise if the conformational change we infer in the EQ complex opens up additional sites on the protein which can interact with the dead-end inhibitor.  相似文献   
8.
1. NAD+ kinase (ATP:NAD+ 2' phosphotransferase, EC 2.7.1.23) has been purified to apparent enzymic homogeneity on Blue Sepharose CL-6B. 2. The molecular weight of the active species is about 260,000 as determined by PAGE and gel chromatography. Protein staining (PAGE) revealed minor bands with molecular weight values of 40,000, 140,000 and 550,000. Subunit studies (SDS-PAGE) gave evidence of a single band of molecular weight approximately 32,000. 3. On the basis of the release patterns of this enzyme from several affinity gels, an elution diagram is proposed as a device to assess the contribution of any of the several displacing agents that can be used to manipulate the desorption of a (enzyme) ligate from an immobilized ligand.  相似文献   
9.
10.
After disulphide bonds are reduced with dithiothreitol, trans-3- (α-bromomethyl)-3’-[α- (trimethylammonium)methyl]azobenzene (trans-QBr) alkylates a sulfhydryl group on receptors. The membrane conductance induced by this “tethered agonist” shares many properties with that induced by reversible agonists. Equilibrium conductance increases as the membrane potential is made more negative; the voltage sensitivity resembles that seen with 50 [mu]M carbachol. Voltage- jump relaxations follow an exponential time-course; the rate constants are about twice as large as those seen with 50 μM carbachol and have the same voltage and temperature sensitivity. With reversible agonists, the rate of channel opening increases with the frequency of agonist-receptor collisions: with tethered trans-Qbr, this rate depends only on intramolecular events. In comparison to the conductance induced by reversible agonists, the QBr-induced conductance is at least 10-fold less sensitive to competitive blockade by tubocurarine and roughly as sensitive to “open-channel blockade” bu QX-222. Light-flash experiments with tethered QBr resemble those with the reversible photoisomerizable agonist, 3,3’,bis-[α-(trimethylammonium)methyl]azobenzene (Bis-Q): the conductance is increased by cis {arrow} trans photoisomerizations and decreased by trans {arrow} cis photoisomerizations. As with Bis-Q, ligh-flash relaxations have the same rate constant as voltage-jump relaxations. Receptors with tethered trans isomer. By comparing the agonist-induced conductance with the cis/tans ratio, we conclude that each channel’s activation is determined by the configuration of a single tethered QBr molecule. The QBr-induced conductance shows slow decreases (time constant, several hundred milliseconds), which can be partially reversed by flashes. The similarities suggest that the same rate-limiting step governs the opening and closing of channels for both reversible and tethered agonists. Therefore, this step is probably not the initial encounter between agonist and receptor molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号