首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   6篇
  国内免费   1篇
  185篇
  2021年   4篇
  2019年   2篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   13篇
  2011年   6篇
  2010年   8篇
  2009年   9篇
  2008年   5篇
  2007年   8篇
  2006年   11篇
  2005年   10篇
  2004年   3篇
  2003年   7篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1987年   3篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1963年   1篇
  1961年   2篇
  1960年   1篇
  1957年   3篇
  1954年   1篇
  1948年   1篇
  1943年   1篇
  1934年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
1.
Low-angle laser-light scattering (LALLS) was employed to measure the absolute molecular weight of chicken liver NAD+ kinase (NADK). The weight-average molecular weight (Mw) was found to be 275 000 +/- 15 000. The corresponding value for the second virial coefficient was -1.65 X 10(-3) ml X mol X g2. The value for Mw is in close accord with estimates reported for pigeon liver (270 000) and C. utilis (260 000) NADK. If the active enzyme is a dimer, the weight difference between pigeon/chicken liver and rabbit liver (136 000) NADK would indicate that the latter enzyme is an active monomer unit.  相似文献   
2.
3.
An ion-pair, reverse-phase, high-performance liquid chromatography method of assay was developed and used in a series of rate studies carried out with the enzyme chicken liver NAD+ kinase (ATP:NAD+ 2'-phosphotransferase, EC 2.7.1.23). Complete separation of all products and reactants was achieved within 15 min. ATP, NAD+, ADP, and NADP+ were monitored at 260 nm as they eluted from a Zorbax (Dupont) ODS (4.6 X 250-mm) column using an acetonitrile and 0.01 mM NH4(H2PO4)/0.005 M tetrabutylammonium phosphate (pH 7.0) gradient. The enzyme shows a marked preference for ATP (and dATP) and Mg2+ (or Mn2+) relative to other trinucleotides and divalent metal ions. It exhibits residual adenylate kinase and ATPase activity, but no NADH kinase activity. When polyphosphate replaced ATP, NADP+ production dropped to 2.5%. The addition of Ca2+ and/or bovine brain calmodulin did not significantly enhance the rate of NADP+ production.  相似文献   
4.
Ca2+/calmodulin-dependent protein kinase II, an abundant brain protein proposed to mediate a number of Ca2+-regulated processes in neuronal tissue, is composed of autophosphorylatable subunits of Mr 50,000 and 60,000/58,000. A recent study (McGuinness, T. L., Lai, Y., Greengard, P., Woodgett, J.R., and Cohen, P. (1983) FEBS Lett. 163, 329-334) suggested that this kinase exists as isozymes which vary in the relative ratio of these subunits in different tissues or species. Other studies (Walaas, S. I., Nairn, A. C., and Greengard, P. (1983) J. Neurosci. 3, 291-301, 302-311) provided evidence which suggested that the ratio of these phosphopeptides might vary in different brain regions. In the present investigation, we have tested this possibility by comparing Ca2+/calmodulin-dependent protein kinase II purified from rat forebrain and cerebellum. The two kinases had similar purification characteristics, subunit compositions, physical properties, and substrate specificities. Gel filtration and sucrose density gradient centrifugation provided an estimated molecular weight of 550,000 for the forebrain kinase and 615,000 for the cerebellar kinase. The kinases from the two regions clearly differed in the relative proportions of the Mr 50,000 and 60,000/58,000 subunits. Three independent methods indicated that the forebrain kinase contained the Mr 50,000/(60,000/58,000) subunits in approximately a 3:1 ratio, while the cerebellar kinase contained the Mr 50,000/(60,000/58,000) subunits in approximately a 1:4 ratio. The forebrain kinase subunits were shown to be identical to the corresponding subunits of the cerebellar kinase by several criteria. The data are consistent with the existence in various brain regions of isozymic forms of Ca2+/calmodulin-dependent protein kinase II which differ in their relative subunit ratios.  相似文献   
5.
Steady-state kinetic studies including initial velocity for mannitol oxidation and fructose reduction and product inhibition for mannitol oxidation using fructose and reduced nicotinamide adenine dinucleotide (NADH) are in accord with a reaction mechanism best described as ordered Bi-Bi with NAD+ and NADH designated as the first substrate, last product, respectively at pH 8.8. All replots of slopes and intercepts from product inhibition studies were linear. Dead-end inhibition studies using mannitol 1-phosphate gave slope-parabolic, intercept-linear noncompetitive inhibition for both NAD+ and mannitol as substrates. The dead-end inhibitor is capable of binding multiply to the E, EA, and EQ forms of the enzyme to an extent that is controlled by the concentration of substrates. The EQ complex is inferred to undergo a conformational change, E'Q equilibrium EQ, since (V1/E1) greater than (KiqV2)/(KqE1), and no evidence for dead-end complex formation with NADH can be adduced. This is interpreted to mean that the release of fructose from the central complex is faster than the isomerization of the E-NADH complex. When mannitol is saturating, the noncompetitive inhibition against NAD+, as the variable substrate, becomes parabolic uncompetitive. A replot of the slopes of the parabola against mannitol 1-phosphate remains concave upward. This situation could arise if the conformational change we infer in the EQ complex opens up additional sites on the protein which can interact with the dead-end inhibitor.  相似文献   
6.
7.
Arteriosclerotic thrombotic lesions involving the arteries to the lower extremities may be conveniently grouped into three categories. Lesions of the aorta-common-iliac level (Category I) appear to be most satisfactorily treated by thromboendarterectomy. Lesions in the femoral artery (Category II) are particularly amenable to bypass arterial grafts. Advanced lesions (Category III) involving both areas may be treated by one or the other method or a combination of both. Aortography is a necessary prerequisite in the selection of patients for operation and the determination of the method of surgical approach.  相似文献   
8.
Ophioglossum petiolatum . Unlike Angiopteris (Marattiales), which is monoplastidic, Ophioglossum undergoes polyplastidic meiosis like members of the fern-seed plant clade. The meiotic spindle is distinctly multipolar in origin and is consolidated into a bipolar spindle that is variously twisted and curved to accommodate the large number of chromosomes. Although a phragmoplast forms after first meiosis, no wall is deposited. Instead, an organelle band consisting of intermingled plastids and mitochondria is formed in the equatorial region between the dyad domains. Following second meiosis, a complex of phragmoplasts forms among sister and non-sister nuclei. Cell plates are deposited first between sister nuclei and then in the region of the organelle band resulting in a tetrad of spores each with a equal allotment of organelles. Received 30 January 2001/ Accepted in revised form 24 April 2001  相似文献   
9.
Purification of horse-liver polyoi dehydrogenase (PDH) on DE52 anion-exchange cellulose reveals the presence of three fractions with enzyme activity. These appear in the breakthrough volume (PDH-3) and the salt gradient (PDH-1, -2) respectively. The major band of activity (< 90%) is found in the PDH-2 fraction. A reexamination of sheep-liver polyol dehydrogenase also reveals the presence of three bands of activity, with the dominant fraction (PDH-3) corresponding to the preparation described by Smith (Biochem. J., 83, 135–144, (1962))3. The interaction between horse-liver (and sheep-liver) PDH and Blue Sepharose CL-6B is found to be endothermic. This property is utilized in the final purification step. Horse-liver PDH-2 has a molecular/subunit weight of 85, 000/28, 000, a Stokes' radius of 3.8 nm, and an isoelectric point of 7.4.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号