首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2011年   1篇
  2009年   2篇
  2007年   1篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   2篇
  1989年   5篇
  1987年   4篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有48条查询结果,搜索用时 31 毫秒
1.
Summary Two different aspects of tritiated thymidine (3H-Tdr) reutilisation in skeletal muscle were examined. Injection of a high dose (7 Ci/g) of 3H-Tdr into mice prior to crush injury of skeletal muscle resulted in heavy labelling (grain counts) of myotube nuclei 9 d later. In contrast, myotube nuclei were essentially unlabelled when a low dose (1 Ci/g) of 3H-Tdr was injected at similar times with respect to injury. It was concluded that labelling seen after the high dose was due to reutilisation of 3H-Tdr. (Such 3H-Tdr reutilisation can account for the results of Sloper et al. (1970) which previously supported the concept of a circulating muscle precursor cell.) When replicating muscle precursors were labelled directly with 3H-Tdr 48 h after injury, the percentages of labelled myotube nuclei and the distribution of nuclear grain counts were similar with either high or low dose.We also investigated whether the light labelling seen in regenerated myotube nuclei after 9 d, when 3H-Tdr had been injected before the onset of myogenesis (as found by McGeachie and Grounds 1987), was due to 3H-Tdr reutilisation or, alternatively, to proliferation of local cells in the wound which subsequently gave rise to muscle precursors. Labelling of myotube nuclei was compared in mice injected with 3H-Tdr either 2 h before, or 2 h after injury. In another experiment, mice were injected 12 h after injury and lesions sampled 1, 12 or 36 h later, to see whether local cells were replicating 12 h after injury, and what labelled cells subsequently entered to wound. No difference was found in myotube labelling between mice injected before or after injury, and no cells replicating locally in the wound at 12 h after injury were observed. The results clearly show that the light labelling was due to 3H-Tdr reutilisation.  相似文献   
2.
Autoradiographic studies were carried out on regenerating muscles of adult chickens. Three different muscles of hens were injured, and tritiated thymidine (1 μCi/g) was injected at various times after injury to label replicating muscle precursors. Detailed comparisons of grain counts over premitotic nuclei in samples removed one hour after injection of tritiated thymidine, and of postmitotic myotube nuclei in samples removed 10 days after injury (when labeled precursors had fused to form myotubes), revealed how many times some labeled precursors had divided before fusing into myotubes. DNA synthesis in muscle precursors was initiated 30 h after injury. Grain counts of myotube nuclei indicated that many muscle precursors labeled at the onset of myogenic cell proliferation had divided only once, or twice, before fusing into myotubes. The relationship of these in vivo results to the cell lineage model of myogenesis is discussed.  相似文献   
3.
Summary Skeletal muscle regeneration in SJL/J and BALB/c mice subjected to identical crush injuries is markedly different: in SJL/J mice myotubes almost completely replace damaged myofibres, whereas BALB/c mice develop fibrotic scar tissue and few myotubes. To determine the cellular changes which contribute to these differential responses to injury, samples of crushed tibialis anterior muscles taken from SJL/J and BALB/c mice between 1 and 10 days after injury were analysed by light and electron microscopy, and by autoradiography. Longitudinal muscle sections revealed about a 2-fold greater total mononuclear cell density in SJL/J than BALB/c mice at 2 to 3 days after injury. Electron micrographs identified a similar proportion of cell types at 3 days after injury. Autoradiographic studies showed that the proportions of replicating mononuclear cells in both strains were similar: therefore greater absolute numbers of cells (including muscle precursors and macrophages) were proliferating in SJL/J muscle. Removal of necrotic muscle debris in SJL/J mice was rapid and extensive, and by 6 to 8 days multinucleated myotubes occupied a large part of the lesion. By contrast, phagocytosis was less effective in BALB/c mice, myotube formation was minimal, and fibrotic tissue conspicuous. These data indicate that the increased mononuclear cell density, more efficient removal of necrotic muscle, together with a greater capacity for myotube formation in SJL/J mice, contribute to the more successful muscle regeneration seen after injury.  相似文献   
4.
5.
An overview of the basic principles of photochemistry is presented to facilitate discussion of fluorescence, quenching and quantum yields. These topics in turn provide the foundation for an account of fluorescence spectroscopy and its application to microscopy. A brief overview of light microscopy and the application of fluorescence microscopy is given. The influences of molecular features, such as aromatic character and substitution patterns, on color and fluorescence are described. The concept of color fading is considered with particular reference to its effect on microscopic preparations. A survey of representative fluorescent probes is provided, and their sensitivity, application, and limitations are described. The phototoxicity of fluorescent molecules is discussed using biomembranes and DNA as examples of targets of toxicity. Photodynamic therapy, a relatively new clinical application of phototoxicity, is described. Both anticancer and antimicrobial applications are noted, and an assessment is given of the current ideas on the ideal physicochemical properties of the sensitizing agents for such applications.  相似文献   
6.
7.
8.
The expression of laminin isoforms and laminin-binding integrin receptors known to occur in muscle was investigated during myogenic regeneration after crush injury. Comparisons were made between dystrophic 129ReJ dy/dy mice, which have reduced laminin α2 expression, and their normal littermates. The overall histological pattern of regeneration after crush injury was similar in dy/dy and control muscle, but proceeded faster in dy/dy mice. In vitro studies revealed a greater yield of mononuclear cells extracted from dy/dy muscle and a reduced proportion of desmin-positive cells upon in vitro cultivation, reflecting the presence of inflammatory cells and “preactivated” myoblasts due to ongoing regenerative processes within the endogenous dystrophic lesions. Laminin α1 was not detectable in skeletal muscle. Laminin α2 was present in basement membranes of mature myofibers and newly formed myotubes in control and dy/dy muscles, albeit weaker in dy/dy. Laminin α2-negative myogenic cells were detected in dy/dy and control muscle, suggesting the involvement of other laminin α chains in early myogenic differentiation, such as laminin α4 and α5 which were both transiently expressed in basement membranes of newly formed myotubes of dy/dy and control mice. Integrin β1 was expressed on endothelial cells, muscle fibers, and peripheral nerves in uninjured muscle and broadened after crush injury to the interstitium where it occurred on myogenic and nonmyogenic cells. Integrin α3 was not expressed in uninjured or regenerating muscle, while integrin α6 was expressed mainly on endothelial cells and peripheral nerves in uninjured muscle. Upon crush injury integrin α6 increased in the interstitium mainly on nonmyogenic cells, including infiltrating leukocytes, endothelial cells, and fibroblasts. In dy/dy muscle, integrin α6 occurred on some newly formed myotubes. Integrin α7 was expressed on muscle fibers at the myotendinous junction and showed weak and irregular expression on muscle fibers. After crush injury, integrin α7 expression extended to the newly formed myotubes and some myoblasts. However, many myoblasts and newly formed myotubes were integrin α7 negative. No marked difference was observed in integrin α7 expression between dy/dy and control muscle, either uninjured or after crush injury. Only laminin α4 and integrin α6 expression patterns were notably different between dy/dy and control muscle. Expression of both molecules was more extensive in dy/dy muscle, especially in the interstitium of regenerating areas and on newly formed myotubes. In view of the faster myogenic regeneration observed in dy/dy mice, the data suggest that laminin α4 and integrin α6 support myogenic regeneration. However, whether these accelerated myogenic effects are a direct consequence of the reduced laminin α2 expression in dy/dy mice, or an accentuation of the ongoing regenerative events in focal lesions in the muscle, requires further investigation.  相似文献   
9.
The histological effect on and stress response of post juvenile Clarias gariepinus exposed to Qua Iboe crude oil and rig wash were investigated. Fish weighing 60–90 g and measuring 16–18 cm were exposed for 7–28 days to 8.00 ml?1 Qua Iboe crude oil and 0.0018 ml–1 rig wash, both being 0.1 of the 96 hr LC50. Blood samples of C. gariepinus were collected every seven days and evaluated for stress by measuring cortisol concentration. The gills and liver were studied and scored for Gill Alteration Index (GAI) and Hepatic Alteration Index (HAI), respectively. There was an increase in cortisol level up to the 7th and 14th day among the group exposed to Qua Iboe crude oil, with a decrease on the 21st and 28th day. The rig wash group increased in cortisol level up to the 7th day and decreased slightly on the 14th day, after which the trend became irregular. The toxic effects of the Qua Iboe crude oil and rig wash were time dependent, as shown by the histopathological alteration index (HAI) of gill and liver. After 28 days of exposure, the gills had irreparable damage due to high frequency of cellular necrosis and degeneration, whereas the liver had from moderate to severe damage due to the high frequency of cellular degeneration and inflammation. Qua Iboe crude oil and rig wash are both toxic to C. gariepinus, therefore their indiscriminate discharge to the environment must be discouraged.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号