首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   5篇
  2018年   1篇
  2014年   1篇
  2012年   3篇
  2011年   2篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  1999年   5篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1957年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
Cultured bovine capillary endothelial (BCE) cells produce low levels of collagenolytic activity and significant amounts of the serine protease plasminogen activator (PA). When grown in the presence of nanomolar quantities of the tumor promoter 12-O-tetradecanoyl phorbol-13-acetate (TPA), BCE cells produced 5-15 times more collagenolytic activity and 2-10 times more PA than untreated cells. The enhanced production of these enzymes was dependent on the dose of TPA used, with maximal response at 10(-7) to 10(-8) M. Phorbol didecanoate (PDD), an analog of TPA which is an active tumor promoter, also increased protease production. 4-O-methyl-TPA and 4α-PDD, two analogs of TPA which are inactive as tumor promoters, had no effect on protease production. Increased PA and collagenase activities were detected within 7.5 and 19 h, respectively, after the addition of TPA. The TPA-stimulated BCE cells synthesized a urokinase-type PA and a typical vertebrate collagenase. BCE cells were compared with bovine aortic endothelial (BAE) cells and bovine embryonic skin (BES) fibroblasts with respect to their production of protease in response to TPA. Under normal growth conditions, low levels of collagenolyic activity were detected in the culture fluids from BCE, BAE, and BES cells. BCE cells produced 5-13 times the basal levels of collagenolytic activity in response to TPA, whereas BAE cells and BES fibroblasts showed a minimal response to TPA. Both BCE and BAE cells exhibited relatively high basal levels of PA, the production of which was stimulated approximately threefold by the addition of TPA. The observation that BCE cells and not BAE cells produced high levels of both PA and collagenase activities in response to TPA demonstrates a significant difference between these two types of endothelial cells and suggests that the enhanced detectable activities are a property unique to bovine capillary and microvessel and endothelial cells.  相似文献   
2.
alpha-Dystroglycan (DG) has been identified as the cellular receptor for lymphocytic choriomeningitis virus (LCMV) and Lassa fever virus (LFV). This subunit of DG is a highly versatile cell surface molecule that provides a molecular link between the extracellular matrix (ECM) and a beta-DG transmembrane component, which interacts with the actin-based cytoskeleton. In addition, DG exhibits a complex pattern of interaction with a wide variety of ECM and cellular proteins. In the present study, we characterized the binding of LCMV to alpha-DG and addressed the role of alpha-DG-associated host-derived proteins in virus infection. We found that the COOH-terminal region of alpha-DG's first globular domain and the NH2-terminal region of the mucin-related structures of alpha-DG together form the binding site for LCMV. The virus-alpha-DG binding unlike ECM alpha-DG interactions was not dependent on divalent cations. Despite such differences in binding, LCMV and laminin-1 use, in part, an overlapping binding site on alpha-DG, and the ability of an LCMV isolate to compete with laminin-1 for receptor binding is determined by its binding affinity to alpha-DG. This competition of the virus with ECM molecules for receptor binding likely explains the recently found correlation between the affinity of LCMV binding to alpha-DG, tissue tropism, and pathological potential. LCMV strains and variants with high binding affinity to alpha-DG but not low affinity binders are able to infect CD11c+ dendritic cells, which express alpha-DG at their surface. Infection followed by dysfunction of these antigen-presenting cells contributes to immunosuppression and persistent viral infection in vivo.  相似文献   
3.
Viral infections are a major cause of human disease. Although most viruses replicate in peripheral tissues, some have developed unique strategies to move into the nervous system, where they establish acute or persistent infections. Viral infections in the central nervous system (CNS) can alter homeostasis, induce neurological dysfunction and result in serious, potentially life-threatening inflammatory diseases. This Review focuses on the strategies used by neurotropic viruses to cross the barrier systems of the CNS and on how the immune system detects and responds to viral infections in the CNS. A special emphasis is placed on immune surveillance of persistent and latent viral infections and on recent insights gained from imaging both protective and pathogenic antiviral immune responses.  相似文献   
4.
Persistent viral infections are a major health concern worldwide. During persistent infection, overwhelming viral replication and the rapid loss of antiviral T-cell function can prevent immune-mediated clearance of the infection, and therapies to reanimate the immune response and purge persistent viruses have been largely unsuccessful. Adoptive immunotherapy using memory T cells is a highly successful therapeutic approach to eradicate a persistent viral infection. Understanding precisely how therapeutically administered memory T cells achieve clearance should improve our ability to terminate states of viral persistence in humans. Mice persistently infected from birth with lymphocytic choriomeningitis virus are tolerant to the pathogen at the T-cell level and thus provide an excellent model to evaluate immunotherapeutic regimens. Previously, we demonstrated that adoptively transferred memory T cells require recipient dendritic cells to effectively purge an established persistent viral infection. However, the mechanisms that reactivate and sustain memory T-cell responses during clearance of such an infection remain unclear. Here we establish that therapeutic memory T cells require CD80 and CD86 costimulatory signals to efficiently clear an established persistent viral infection in vivo. Early blockade of costimulatory pathways with CTLA-4-Fc decreased the secondary expansion of virus-specific CD8+ and CD4+ memory T cells as well as their ability to produce antiviral cytokines and purge the persistent infection. Late costimulation blockade also reduced virus-specific T-cell numbers, illustrating that sustained interactions with costimulatory molecules is required for efficient T-cell expansion. These findings indicate that antiviral memory T cells require costimulation to efficiently clear a persistent viral infection and that costimulatory pathways can be targeted to modulate the magnitude of an adoptive immunotherapeutic regimen.Persistent viruses, such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus, cause major health problems worldwide and are extraordinarily difficult to clear following the establishment of persistence. Given the challenges associated with clearing persistent infections, it is important to develop and mechanistically understand therapeutic strategies that successfully achieve viral eradication without inducing permanent damage in the host. Studies using the lymphocytic choriomeningitis virus (LCMV) model system have convincingly demonstrated that a systemic persistent viral infection can be completely purged from a murine host by using a therapeutic approach referred to as adoptive immunotherapy (1, 15, 22, 29, 30). Remarkably, total body control of multiple persistent viral infections in both the mouse (1, 15, 22, 29, 30) and humans (8, 14, 24, 26, 31) can be achieved using adoptive immunotherapy. When mice are persistently infected at birth or in utero with LCMV (referred to as carrier mice), the virus establishes systemic persistence (6). Adult LCMV carrier mice are tolerant to the virus at the T-cell level and thus are unable to eradicate the pathogen (23), which provides an excellent model to study immunotherapeutic regimens. Immunocytotherapy relies on the adoptive transfer of virus-specific memory CD8 and CD4 T cells from LCMV-immune donor mice into recipient carrier mice (1, 15, 22, 29, 30). Following the therapeutic administration of memory cells, LCMV is purged from most peripheral tissues of carrier mice in 14 days, whereas more than 100 days are required to clear virus from the central nervous system (CNS) and kidneys (1, 15, 22). Furthermore, successful viral clearance requires antiviral “memory” but not “effector” T cells (11). Thus, in addition to its proven therapeutic relevance, this model also provides a paradigm to understand factors that regulate memory T cells following secondary exposure to pathogens in vivo.The mechanisms leading to activation of naïve T cells have been well described and involve recognition of major histocompatibility complex (MHC) peptide through the T-cell receptor (TCR) as well as costimulation (e.g., CD80 and CD86 interactions) (4, 25, 27). On the other hand, the factors that govern the activation and secondary expansion of memory CD8+ and CD4+ T cells are less clearly defined, particularly in an in vivo therapeutic setting. When memory T cells reencounter cognate antigen, they respond rapidly by producing cytokines and dividing. Previous studies indicated that there was no role for dendritic cells or costimulation (4, 27) in the reactivation of memory T cells; however, three recent studies have shown that dendritic cells (DCs) stimulate memory T-cell activity upon antigen rechallenge (2, 33) and during adoptive immunotherapy (15). Because MHC class I antigen (MHC-I) is expressed on nearly all cell types but costimulatory molecules are not, these three studies strongly suggested that DCs were influencing memory T cells with costimulatory pathways thought only to be required during priming. Indeed, when the issue was reexamined, it was revealed that memory CD8+ and CD4+ T cells require CD28-CD80/CD86 costimulation to be fully reactivated upon secondary exposure to antigen (3, 7, 21).Because therapeutically administered memory T cells require effective interactions with the host hematopoietic system (10), in particular dendritic cells (15), to achieve successful viral clearance, we set out to address several unanswered questions. First, is costimulation required for the immunotherapeutic clearance of an established persistent viral infection? This is a particularly important question because the requirements imposed on therapeutically administered memory T cells, which encounter immediate and overwhelmingly high levels of virus, heightened antigenic stimulation, and a unique inflammatory milieu, are likely to be different than those faced by endogenous memory T cells following pathogen rechallenge in an otherwise-quiescent environment. The second question we set out to address in this study was whether costimulation blockade could modulate the activities of an immunotherapeutic regimen consisting of memory T cells. This question is of great importance in a clinical setting where pathogen-specific memory T cells can induce severe tissue pathology through the release of effector molecules (12). Thus, it is critical to have a strategy to limit the magnitude of an undesirable response without impeding viral clearance.  相似文献   
5.
A common polygenic basis for quinine and PROP avoidance in mice   总被引:3,自引:2,他引:1  
Harder  DB; Whitney  G 《Chemical senses》1998,23(3):327-332
Inbred strains of mice (Mus musculus) differ greatly in ability to taste various bitter compounds. For some compounds, the differences result from allelic variation at a single locus. However, segregation patterns incompatible with monogenic inheritance have been found for quinine avoidance. The Soa bitter sensitivity locus exerts some influence on this phenotype, but an unknown number of other loci also contribute. Relative avoidance patterns for quinine sulfate in panels of naive inbred strains resembled avoidance patterns for 6-n-propyl-2- thiouracil (PROP), suggesting a common genetic basis. In particular, C57BL/6J mice strongly avoided both 0.1 mM quinine sulfate and 1 mM PROP in two-bottle preference tests, whereas C3H/HeJ mice were indifferent to both. Therefore, 12 BXH/Ty recombinant inbred strains, derived from these strains, were tested with both solutions to begin identification of the unknown bitter loci. Naive mice were tested for four consecutive days with each compound (order counterbalanced). Some BXH/Ty strain means resembled those of the parent strains, but others were intermediate. This indicated recombination among loci affecting avoidance, and therefore polygenic inheritance. The strain means were highly correlated across compounds (r = 0.98), suggesting that the same polygenes controlled both phenotypes. The BXH/Ty means for both compounds were then compared with the strain genotypes at 212 chromosome position markers distributed throughout the genome. Eight markers on five chromosomes (3, 6, 7, 8 and 9) yielded significant correlations. Six of the markers were correlated with both phenotypes, again suggesting common polygenic inheritance. The marker with the highest correlation was Prp, tightly linked to Soa on chromosome 6. The correlated marker regions likely contain quantitative trait loci affecting bitter avoidance. The phenotypic similarity of PROP to quinine, rather than to phenylthiourea, apparently stemming from a common polygenic basis, indicates a difference between mice and humans in gustatory organization related to bitters.   相似文献   
6.

Background  

Obesity is rapidly becoming a worldwide epidemic that affects children and adults. Some studies have shown a relationship between obesity and infertility, but until now it remains controversial. Thus, the aim of the present study was to investigate the effect of high-fat diet-induced obesity on male reproductive parameters.  相似文献   
7.
We quantified CD8 T cells needed to cause type 1 diabetes and studied the anatomy of the CD8 T cell/beta (β) cell interaction at the immunologic synapse. We used a transgenic model, in situ tetramer staining to distinguish antigen specific CD8 T cells from total T cells infiltrating islets and a variety of viral mutants selected for functional deletion(s) of various CD8 T cell epitopes. Twenty percent of CD8 T cells in the spleen were specific for all immunodominant and subdominant viral glycoprotein (GP) epitopes. CTLs to the immunodominant LCMV GP33-41 epitope accounted for 63% of the total (12.5% of tetramers). In situ hybridization analysis demonstrated only 1 to 2% of total infiltrating CD8 T cells were specific for GP33 CD8 T cell epitope, yet diabetes occurred in 94% of mice. The immunologic synapse between GP33 CD8 CTL and β cell contained LFA-1 and perforin. Silencing both immunodominant epitopes (GP33, GP276–286) in the infecting virus led to a four-fold reduction in viral specific CD8 CTL responses, negligible lymphocyte infiltration into islets and absence of diabetes.  相似文献   
8.
A phylogenetic approach to the identification of phosphoglucomutase genes   总被引:3,自引:0,他引:3  
The expanding molecular database provides unparalleled opportunities for characterizing genes and for studying groups of related genes. We use sequences drawn from the database to construct an evolutionary framework for examining the important glycolytic enzyme phosphoglucomutase (PGM). Phosphoglucomutase plays a pivotal role in the synthesis and utilization of glycogen and is present in all organisms. In humans, there are three well-described isozymes, PGMI, PGM2, and PGM3. PGM1 was cloned 5 years ago; however, repeated attempts using both immunological approaches and molecular probes designed from PGM1 have failed to isolate either PGM2 or PGM3. Using a phylogenetic strategy, we first identified 47 highly divergent prokaryotic and eukaryotic PGM-like sequences from the database. Although overall amino acid identity often fell below 20%, the relative order, position, and sequence of three structural motifs, the active site and the magnesium-- and sugar-binding sites, were conserved in all 47 sequences. The phylogenetic history of these sequences was complex and marked by duplications and translocations; two instances of transkingdom horizontal gene transfer were identified. Nonetheless, the sequences fell within six well-defined evolutionary lineages, three of which contained only prokaryotes. Of the two prokaryotic/eukaryotic lineages, one contained bacterial, yeast, slimemold, invertebrate, and vertebrate homologs to human PGM1 and the second contained likely homologs to human PGM2. Indeed, an amino acid sequence, derived from a partial human cDNA, that fell within the second cross-kingdom lineage bears several characteristics expected for PGM2. A third lineage may contain homologs to human PGM3. On a general level, our phylogenetic-based approach shows promise for the further utilization of the extensive molecular database.   相似文献   
9.
The insertion of axonally transported fucosyl glycoproteins into the axolemma of regenerating nerve sprouts was examined in rat sciatic motor axons at intervals after nerve crush. [(3)H]Fucose was injected into the lumbar ventral horns and the nerves were removed at intervals between 1 and 14 d after labeling. To follow the fate of the “pulse- labeled” glycoproteins, we examined the nerves by correlative radiometric and EM radioautographic approaches. The results showed, first, that rapidly transported [(3)H]fucosyl glycoproteins were inserted into the axolemma of regenerating sprouts as well as parent axons. At 1 d after delivery, in addition to the substantial mobile fraction of radioactivity still undergoing bidirectional transport within the axon, a fraction of label was already associated with the axolemma. Insertion of labeled glycoproteins into the sprout axolemma appeared to occur all along the length of the regenerating sprouts, not just in sprout terminals. Once inserted, labeled glycoproteins did not undergo extensive redistribution, nor did they appear in sprout regions that formed (as a result of continued outgrowth) after their insertion. The amount of radioactivity in the regenerating nerves decreased with time, in part as a result of removal of transported label by retrograde transport. By 7-14 d after labeling, radioautography showed that almost all the remaining radioactivity was associated with axolemma. The regenerating sprouts retained increased amounts of labeled glycoproteins; 7 or 14 d after labeling, the regenerating sprouts had over twice as much of radioactivity as comparable lengths of control nerves or parent axons. One role of fast axonal transport in nerve regeneration is the contribution to the regenerating sprout of glycoproteins inserted into the axolemma; these membrane elements are added both during longitudinal outgrowth and during lateral growth and maturation of the sprout.  相似文献   
10.
Although both self- and pathogen-specific T cells can participate in tissue destruction, recent studies have proposed that after viral infection, bystander T cells of an irrelevant specificity can bypass peptide-MHC restriction and contribute to undesired immunopathological consequences. To evaluate the importance of this mechanism of immunopathogenesis, we determined the relative contributions of Ag-specific and bystander CD8+ T cells to the development of CNS disease. Using lymphocytic choriomeningitis virus (LCMV) as a stimulus for T cell recruitment into the CNS, we demonstrate that bystander CD8+ T cells with an activated surface phenotype can indeed be recruited into the CNS over a chronic time window. These cells become anatomically positioned in the CNS parenchyma, and a fraction aberrantly acquires the capacity to produce the effector cytokine, IFN-gamma. However, when directly compared with their virus-specific counterparts, the contribution of bystander T cells to CNS damage was insignificant in nature (even when specifically activated). Although bystander T cells alone failed to cause tissue injury, transferring as few as 1000 naive LCMV-specific CD8+ T cells into a restricted repertoire containing only bystander T cells was sufficient to induce immune-mediated pathology and reconstitute a fatal CNS disease. These studies underscore the importance of specific T cells in the development of immunopathology and subsequent disease. Because of highly restrictive constraints imposed by the host, it is more likely that specific, rather than nonspecific, bystander T cells are the active participants in T cell-mediated diseases that afflict humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号