首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   39篇
  国内免费   1篇
  2018年   1篇
  2016年   3篇
  2014年   4篇
  2013年   2篇
  2012年   7篇
  2011年   12篇
  2010年   9篇
  2009年   15篇
  2008年   12篇
  2007年   17篇
  2006年   8篇
  2005年   16篇
  2004年   7篇
  2003年   7篇
  2002年   8篇
  2001年   14篇
  2000年   7篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   6篇
  1995年   5篇
  1994年   7篇
  1993年   5篇
  1992年   7篇
  1991年   9篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   9篇
  1986年   4篇
  1985年   8篇
  1984年   2篇
  1983年   5篇
  1982年   1篇
  1981年   5篇
  1980年   9篇
  1979年   6篇
  1978年   12篇
  1977年   4篇
  1976年   8篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1971年   9篇
  1970年   6篇
  1968年   1篇
  1966年   2篇
  1964年   1篇
排序方式: 共有323条查询结果,搜索用时 15 毫秒
1.
R N Lewis  N Mak  R N McElhaney 《Biochemistry》1987,26(19):6118-6126
The thermotropic phase behavior of a series of 1,2-diacylphosphatidylcholines containing linear saturated acyl chains of 10-22 carbons was studied by differential scanning calorimetry. When fully hydrated and thoroughly equilibrated by prolonged incubation at appropriate low temperatures, all of the compounds studied form an apparently stable subgel phase (the Lc phase). The formation of the stable Lc phase is a complex process which apparently proceeds via a number of metastable intermediates after being nucleated by incubation at appropriate low temperatures. The process of Lc phase formation is subject to considerable hysteresis, and our observations indicate that the kinetic limitations become more severe as the length of the acyl chain increases. The kinetics of Lc phase formation also depend upon whether the acyl chains contain an odd or an even number of carbon atoms. The Lc phase is unstable at higher temperatures and upon heating converts to the so-called liquid-crystalline state (the L alpha phase). The conversion from the stable Lc to the L alpha phase can be a direct, albeit a multistage process, as observed with very short chain phosphatidylcholines, or one or more stable gel states may exist between the Lc and L alpha states. For the longer chain compounds, conversions from one stable gel phase to another become separated on the temperature scale, so that discrete subtransition, pretransition, and gel/liquid-crystalline phase transition events are observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
The active transport of sodium ions in live Acholeplasma laidlawii B cells and in lipid vesicles containing the (Na+-Mg2+)-ATPase from the plasma membrane of this microorganism was studied by 23Na nuclear magnetic resonance spectroscopic and 22Na tracer techniques, respectively. In live A. laidlawii B cells, the transport of sodium was an active process in which metabolic energy was harnessed for the extrusion of sodium ions against a concentration gradient. The process was inhibited by low temperatures and by the formation of gel state lipid in the plasma membrane of this organism. In reconstituted proteoliposomes containing the purified (Na+-Mg2+)-ATPase, the hydrolysis of ATP was accompanied by the transport of sodium ions into the lipid vesicles, and the transport process was impaired by reagents known to inhibit ATPase activity. At the normal growth temperature (37 degrees C), this transport process required a maximum of 1 mol of ATP per mol of sodium ion transported. Together, these results provide direct experimental evidence that the (Na+-Mg2+)-ATPase of the Acholeplasma laidlawii B membrane is the cation pump which maintains the low levels of intracellular sodium characteristic of this microorganism.  相似文献   
3.
The 19F nuclear magnetic resonance (NMR) spectra of membranes of Acholeplasma laidlawii B enriched with one of a series of positional isomers of cis-octadecenoic acid plus small amounts of one of a number of isomers of monofluoropalmitic acid were interpreted in terms of an orientational order parameter (Smol). The variation of Smol with the position of the fluorine label in the liquid-crystalline state yielded an "order profile" with characteristics similar to those obtained via 2H NMR and which was relatively invariant regardless of the site of cis unsaturation. In the gel state, values of Smol approached the theoretical maximum, and the order profiles in the presence of different isomeric cis-octadecenoic acids displayed distinct dissimilarities. When the cis double bond was located proximal to the methyl terminus of the fatty acyl chain, a gradient of order across the bilayer was still evident in the gel state. When the cis double bond was located near the carbonyl head group, values of Smol were approximately equal at all chain positions. These observations were interpreted as indicating that in the gel state the stringency of packing restrictions is still subject to variation across the width of the bilayer. Relative overall orientational order among all isomers examined (specifically, 18:1c delta 4, delta 5, delta 6, delta 7, delta 8, delta 9, delta 10, delta 11, delta 12, delta 13, delta 14, and delta 15) varied directly as a function of proximity to the lipid gel to liquid-crystalline phase transition (Tm) (determined via differential scanning calorimetry) when compared at a constant temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
4.
R N Lewis  R N McElhaney 《Biochemistry》1985,24(18):4903-4911
The thermotropic phase behavior of aqueous dispersions of 10 phosphatidylcholines containing omega-cyclohexyl-substituted acyl chains was studied by differential scanning calorimetry and 31P nuclear magnetic resonance spectroscopy. The presence of the omega-cyclohexyl group has a profound effect on the thermotropic phase behavior of these compounds in a manner dependent on whether the fatty acyl chains have odd- or even-numbered linear carbon segments. The thermotropic phase behavior of the odd-numbered phosphatidylcholines is characterized by a single heating endotherm that was shown to be a superposition of at least two structural events by calorimetric cooling experiments. 31P NMR spectroscopy also showed that the single endotherm of the odd-chain compounds is the structural equivalent of a concomitant gel-gel and gel to liquid-crystalline phase transition. The calorimetric behavior of the even-numbered phosphatidylcholines is characterized by a complex array of gel-state phenomena, in addition to the chain-melting transition, in both the heating and cooling modes. The gel states of these even-numbered compounds are characterized by a relatively greater mobility of the phosphate head group as seen by 31P NMR spectroscopy. The differences between the odd-numbered and even-numbered compounds are reflected in a pronounced odd-even alternation in the characteristic transition temperatures and enthalpies and in differences in their responses to changes in the composition of the bulk aqueous phase. Moreover, both the odd-numbered and even-numbered omega-cyclohexylphosphatidylcholines exhibit significantly lower chain-melting transition temperatures and enthalpies than do linear saturated phosphatidylcholines of comparable chain length.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
5.
The hydrocarbon chain orientational order parameters of membranes of Acholeplasma laidlawii B enriched with large quantities of a linear saturated, a methyl iso-branched, or a methyl anteiso-branched fatty acid plus small quantities of various isomeric monofluoropalmitic acid probes were determined via fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR) over a range of temperatures spanning the gel to liquid-crystalline phase transitions (determined by differential scanning calorimetry). Membrane orientational order profiles in the liquid-crystalline state were generally similar regardless of the particular fatty acyl structure, showing a region of relatively constant order preceding a region of progressive decline in order toward the methyl terminus of the acyl chain. In the gel state, the order profile of the linear saturated fatty acid enriched membranes was characteristically flat, with little head to tail gradation of order. In contrast, the methyl iso-branched and the methyl anteiso-branched enriched membranes exhibited a local disordering in the gel phase reflected in a very pronounced head to tail gradient of order, which remained at temperatures below the lipid phase transition. In addition, the methyl iso- and anteiso-branched fatty acid enriched membranes were overall more disordered than the membrane containing only linear saturated fatty acyl groups. Thus, at a constant value of reduced temperature below the lipid phase transition, overall order decreased in the progression 15:0 greater than 16:0i greater than 16:0ai, suggesting that these methyl-branched substituents lower the lipid phase transition by disrupting the gel phase lipid chain packing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
The membrane (Na+ + Mg2+)-ATPase of Acholeplasma laidlawii B has been solubilized with a Brij-58/sodium deoxycholate mixture and purified by a combination of gel filtration and ion-exchange chromatography. The purified, partially delipidated ATPase has a specific activity of 195 μmol Pi/mg protein per h, which could be enhanced by 25% upon the addition of exogenous phospholipids. The kinetic properties of the purified enzyme are similar to those of the native membrane-bound enzyme, suggesting that it has not been substantially altered during the purification procedure. The enzyme is an assembly of five polypeptide species and its kinetic properties suggest that it is dissimilar to other known ATPases.  相似文献   
7.
The technique of 19F-nuclear magnetic resonance (19F-NMR) spectroscopy offers a number of advantages for studies of lipid fatty acyl chain orientation and dynamics in biomembranes. However, the geminal difluoromethylene fatty acid probes usually employed in such studies appreciably perturb the organization of lipid bilayers. We have thus synthesized a series of specifically monofluorinated palmitic acids and carried out biophysical, biochemical, and physiological studies establishing their suitability as relatively non-perturbing probes of lipid hydrocarbon chain organization. These 19F-NMR probes were then used to determine the fatty acyl chain order profiles of Acholeplasma laidlawii B membranes highly enriched in a variety of different exogenous fatty acids, particularly those containing a methyl branch or a trans-double bond.  相似文献   
8.
The hydration properties and the phase structure of 1,2-di-O-tetradecyl-3-O(3-O-methyl-beta-D-glucopyranosyl)-sn-glycerol (3-O-Me-beta-D-GlcDAIG) in water have been studied via differential scanning calorimetry, 1H-NMR and 2H-NMR spectroscopy, and x-ray diffraction. Results indicate that this lipid forms a crystalline (Lc) phase up to temperatures of 60-70 degrees C, where a transition through a metastable reversed hexagonal (Hll) phase to a reversed micellar solution (L2) phase occurs. Experiments were carried out at water concentrations in a range from 0 to 35 wt%, which indicate that all phases are poorly hydrated, taking up < 5 mol water/mol lipid. The absence of a lamellar liquid crystalline (L alpha) phase and the low levels of hydration measured in the discernible phases suggest that the methylation of the saccharide moiety alters the hydrogen bonding properties of the headgroup in such a way that the 3-O-Me-beta-D-GlcDAIG headgroup cannot achieve the same level of hydration as the unmethylated form. Thus, in spite of the small increase in steric bulk resulting from methylation, there is an increase in the tendency of 3-O-Me-beta-D-GlcDAIG to form nonlamellar structures. A similar phase behavior has previously been observed for the Acholeplasma laidlawii A membrane lipid 1,2-diacyl-3-O-(6-O-acyl-alpha-D-glucopyranosyl)-sn-glycerol in water (Lindblom et al. 1993. J. Biol. Chem. 268:16198-16207). The phase behavior of the two lipids suggests that hydrophobic substitution of a hydroxyl group in the sugar ring of the glucopyranosylglycerols has a very strong effect on their physicochemical properties, i.e., headgroup hydration and the formation of different lipid aggregate structures.  相似文献   
9.
Twelve saturated mixed-chain phosphatidylcholines have been identified for which the thermotropic phase behavior observed upon cooling from the L alpha phase is dependent upon the thermal history of the sample in the gel phase. If fully hydrated samples of these lipids are cooled and soon thereafter examined by differential scanning calorimetry, one observes a single highly cooperative endotherm (the chain-melting phase transition) upon heating, and on subsequent cooling, a single exotherm that may occur at temperatures as much as 4-6 degrees C below that of the single endotherm observed upon heating. In contrast, if the samples are incubated in the gel state at low temperatures for prolonged periods of time, one observes a single heating endotherm as before, but two sharp exotherms upon cooling. The latter transitions occur at temperatures close to that of the single endotherm observed upon heating and the single cooling exotherm observed prior to incubation in the gel state. The combined enthalpy of the two cooling exotherms is the same as that of the single heating endotherm or the single cooling exotherm initially observed. Infrared spectroscopic and X-ray diffraction studies indicate that the structural conversions characteristic of liquid-crystalline/gel phase transitions occur at both of those cooling exotherms. Of the 12 lipids that exhibit this unusual behavior, nine fulfill the previously defined structural requirements for the formation of the so-called mixed-interdigitated gel phase, and there is evidence in the literature that one of the three remaining lipids also forms such a structure. Infrared spectroscopic studies of the other two lipids indicate that their gel phases exhibit spectroscopic features that closely resemble those of lipids that meet the previously defined structural criteria for the formation of mixed-interdigitated gel phases and that differ markedly from those of both saturated symmetric-chain and saturated mixed-chain phosphatidylcholines that do not normally form mixed-interdigitated gel phases. Also, electron density reconstructions based on small-angle X-ray diffraction studies of the gel phases of those two lipids indicate that the thickness of their gel phase bilayers is consistent with their forming mixed-interdigitated gel phases. Thus the unusual thermotropic phase behavior described here may be a general characteristic of phosphatidylcholines that form mixed-interdigitated gel phases. This unusual behavior is not associated with any major change in any of several physical properties of these lipid bilayers but may arise from an alteration of the size and/or structure of microdomains present in the liquid-crystalline phase.  相似文献   
10.
The polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines was investigated by differential scanning calorimetry, 31P-nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Upon heating, aqueous dispersions of dried samples of the short- and medium-chain homologues (n < or = 17) exhibit single, highly energetic transitions from a dry, crystalline form to the fully hydrated, liquid-crystalline bilayer at temperatures higher than the lamellar gel-liquid-crystalline phase transition exhibited by fully hydrated samples. In contrast, the longer chain homologues (n > or = 18) first exhibit a transition from a dehydrated solid form to the hydrated L beta gel phase followed by the gel-liquid-crystalline phase transition normally observed with fully hydrated samples. The fully hydrated, aqueous dispersions of these lipids all exhibit reversible, fairly energetic gel-liquid-crystalline transitions at temperatures that are significantly higher than those of the corresponding phosphatidylcholines. In addition, at still higher temperatures, the longer chain members of this series (n > or = 16) exhibit weakly energetic transitions from the lamellar phase to an inverted nonlamellar phase. Upon appropriate incubation at low temperatures, aqueous dispersions of the shorter chain members of this homologous series (n < or = 16) form a highly ordered crystal-like phase that, upon heating, converts directly to the liquid-crystalline phase at the same temperature as do the aqueous dispersions of the dried lipid. The spectroscopic data indicate that unlike the n-saturated diacyl phosphatidylcholines, the stable crystal-like phases of this series of phosphatidylethanolamines describe an isostructural series in which the hydrocarbon chains are packed in an orthorhombic subcell and the headgroup and polar/apolar interfacial regions of the bilayer are effectively immobilized and substantially dehydrated. Our results suggest that many of the differences between the properties of these phosphatidylethanolamine bilayers and their phosphatidylcholine counterparts can be rationalized on the basis of stronger intermolecular interactions in the headgroup and interfacial regions of the phosphatidylethanolamine bilayers. These are probably the result of differences in the hydration and hydrogen bonding interactions involving the phosphorylethanolamine headgroup and moieties in the polar/apolar interfacial regions of phosphatidylethanolamine bilayers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号