首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   6篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2015年   4篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1992年   4篇
  1990年   3篇
  1989年   7篇
  1988年   1篇
  1986年   4篇
  1985年   2篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1970年   2篇
  1935年   1篇
  1931年   1篇
  1929年   2篇
排序方式: 共有66条查询结果,搜索用时 31 毫秒
1.
Because the inspiratory rib cage muscles are recruited during inspiratory resistive loaded breathing, we hypothesized that such loading would preferentially fatigue the rib cage muscles. We measured the pressure developed by the inspiratory rib cage muscles during maximal static inspiratory maneuvers (Pinsp) and the pressure developed by the diaphragm during maximal static open-glottis expulsive maneuvers (Pdimax) in four human subjects, both before and after fatigue induced by an inspiratory resistive loaded breathing task. Tasks consisted of maintaining a target esophageal pressure, breathing frequency, and duty cycle for 3-5 min, after which the subjects maintained the highest esophageal pressure possible for an additional 5 min. After loading, Pinsp decreased in all subjects [control, -128 +/- 14 (SD) cmH2O; with fatigue, -102 +/- 18 cmH2O; P less than 0.001, paired t test]. Pdimax was unchanged (control, -192 +/- 23 cmH2O; fatigue, -195 +/- 27 cmH2O). These data suggest that 1) inability to sustain the target during loading resulted from fatigue of the inspiratory rib cage muscles, not diaphragm, and 2) simultaneous measurement of Pinsp and Pdimax may be useful in partitioning muscle fatigue into rib cage and diaphragmatic components.  相似文献   
2.
The level of ventilation attained and breathing patterns adopted during activity have important implications for the distribution and deposition of particles that are inhaled. However, breathing patterns and levels of ventilation adopted during specific physical activities are unknown. We used a noninvasive means of measuring ventilation in subjects performing a variety of activities (bicycling, arm ergometry, lifting, and pulling) during unencumbered (no mouthpiece) breathing and while breathing through a mouthpiece. Minute ventilation (VE), tidal volume (VT), inspiratory time (TI), and total breathing cycle time (TT) were measured initially both spirometrically and from body surface displacements. When a mouthpiece was used, VE and breathing patterns were significantly altered during all activities such that VE, VT, and TT increased by 16, 34, and 20%, respectively. This mouthpiece effect was attenuated at the higher levels of VE. A task dependency of breathing pattern was also noted such that there was much greater variability of VT and TI for a given VE during the lifting activity compared with bicycling (coefficient of variation for VT of 0.39 +/- 0.09 vs. 0.20 +/- 0.07, P less than 0.01; and for TI of 0.38 +/- 0.08 vs. 0.21 +/- 0.08, P less than 0.01). We conclude that a mouthpiece significantly alters breathing pattern during varied types and intensities of activities, and breathing patterns may differ significantly from one activity to another. When the total dose of particulates inhaled in the lung are assessed, the mouthpiece effect and activity effect on breathing pattern must be considered.  相似文献   
3.
We hypothesized that, in quadriplegia, chest wall distortion would increase the energy cost of ventilation. To assess this, we measured the oxygen cost of breathing (VO2 resp) and changes in chest wall configuration during inspiratory resistive-loaded breathing tasks in five quadriplegic and five normal subjects. Each subject performed three breathing tasks that spanned a range of work rates (Wtot). Configurational changes of the abdomen and upper, lower, and transverse rib cage were assessed with magnetometers. We found that 1) in both groups, VO2resp increased linearly with Wtot over the range of tasks performed, 2) the mean slope of the regression line of VO2resp vs. Wtot was greater for quadriplegic than for normal subjects (3.7 +/- 0.8 vs. 2.0 +/- 0.7 ml O2/J, P less than 0.01), 3) efficiency of breathing (Wtot/VO2resp) was less for quadriplegic than for normal subjects (1.9 +/- 0.6 vs. 3.5 +/- 1.4%, P less than 0.001), 4) during inhalation, upper and lower rib cages behaved similarly in the two groups, but the quadriplegic subjects had a decrease in transverse rib cage and a much greater increase in abdomen than normal subjects, and 5) functional residual capacity decreased in normal but not in quadriplegic subjects during the breathing tasks. We conclude that the lesser efficiency of breathing in quadriplegia may be related to the elastic work of chest wall distortion, shorter mean operational diaphragm length, and possibly differences between normal and quadriplegic subjects in mechanical advantage of available inspiratory muscles.  相似文献   
4.
The inspiratory muscles can be fatigued by repetitive contractions characterized by high force (inspiratory resistive loads) or high velocities of shortening (hyperpnea). The effects of fatigue induced by inspiratory resistive loaded breathing (pressure tasks) or by eucapnic hyperpnea (flow tasks) on maximal inspiratory pressure-flow capacity and rib cage and diaphragm strength were examined in five healthy adult subjects. Tasks consisted of sustaining an assigned breathing frequency, duty cycle, and either a "pressure-time product" of esophageal pressure (for the pressure tasks) or peak inspiratory flow rate (for the flow tasks). Esophageal pressure was measured during maximal inspiratory efforts against a closed glottis (Pesmax), maximal transdiaphragmatic pressure was measured during open-glottis expulsive maneuvers (Pdimax), and maximal inspiratory flow (VImax) was measured during maximal inspiratory efforts with no added external resistance before and after fatiguing pressure and flow tasks. The reduction in Pesmax) with pressure fatigue (-25 +/- 7%) was significantly greater than the change in Pesmax with flow fatigue (-8 +/- 8%, P less than 0.01). In contrast, the reductions in Pdimax (-11 +/- 8%) and VImax (-16 +/- 3%) with flow fatigue were greater than the changes in Pdimax (-0.6 +/- 4%, P less than 0.05) or VImax (-3 +/- 4%, P less than 0.05) with pressure fatigue. We conclude that respiratory muscle performance is dependent not only on the presence of fatigue but whether fatigue was induced by pressure tasks or flow tasks. The specific impairment of Pesmax and not of Pdimax or flow with pressure fatigue may reflect selective fatigue of the rib cage muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
5.
6.

In this work, an overview of the biosimilars market, pipeline and industry targets is discussed. Biosimilars typically have a shorter timeline for approval (8 years) compared to 12 years for innovator drugs and the development cost can be 10–20% of the innovator drug. The biosimilar pipeline is reviewed as well as the quality management system (QMS) that is needed to generate traceable, trackable data sets. One difference between developing a biosimilar compared to an originator is that a broader analytical foundation is required for biosimilars and advances made in developing analytical similarity to characterize these products are discussed. An example is presented on the decisions and considerations explored in the development of a biosimilar and includes identification of the best process parameters and methods based on cost, time, and titer. Finally factors to consider in the manufacture of a biosimilar and approaches used to achieve the target-directed development of a biosimilar are discussed.

  相似文献   
7.
8.
cAMP has previously been shown to promote cell survival in a variety of cell types, but the downstream signaling pathway(s) of this antiapoptotic effect is unclear. Thus the role of cAMP signaling through PKA and cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs) in cAMP's antiapoptotic action was investigated in the present study. cAMP's protective effect against bile acid-, Fas ligand-, and TNF-alpha-induced apoptosis in rat hepatocytes was largely unaffected by the selective PKA inhibitor, Rp-8-(4-chlorophenylthio)-cAMP (Rp-cAMP). In contrast, a novel cAMP analog, 8-(4-chlorophenylthio)-2'-O-methyl (CPT-2-Me)-cAMP, which activated cAMP-GEFs in hepatocytes without activating PKA, protected hepatocytes against apoptosis induced by bile acids, Fas ligand, and TNF-alpha. The role of cAMP-GEF and PKA on activation of Akt, a kinase implicated in cAMP survival signaling, was investigated. Inhibition of PKA with RP-cAMP had no effect on cAMP-mediated Akt phosphorylation, whereas CPT-2-Me-cAMP, which did not activate PKA, induced phosphatidylinositol 3-kinase (PI3-kinase)-dependent activation of Akt. Pretreatment of hepatocytes with the PI3-kinase inhibitor, Ly-294002, prevented CPT-2-Me-cAMP's protective effect against bile acid and Fas ligand, but not TNF-alpha-mediated apoptosis. Glucagon, CPT-cAMP, and CPT-2-Me-cAMP all activated Rap 1, a downstream effector of cAMP-GEF. These results suggest that a PKA-independent cAMP/cAMP-GEF/Rap pathway exists in hepatocytes and that activation of cAMP-GEFs promotes Akt phosphorylation and hepatocyte survival. Thus a cAMP/cAMP-GEF/Rap/PI3-kinase/Akt signaling pathway may confer protection against bile acid- and Fas-induced apoptosis in hepatocytes.  相似文献   
9.
Loss-of-function mutations in the following seven pneumococcal genes were detected and analyzed: pspA, spxB, xba, licD2, lytA, nanA, and atpC. Factors associated with these mutations included (i) frameshifts caused by reversible gain and loss of single bases within homopolymeric repeats as short as 6 bases, (ii) deletions caused by recombinational events between nontandem direct repeats as short as 8 bases, and (iii) substitutions of guanine residues caused at an increased frequency by the high levels of hydrogen peroxide (>2 mM) typically generated by this species under aerobic growth conditions. The latter accounted for a frequency as high as 2.8 x 10(-6) for spontaneous mutation to resistance to optochin and was 10- to 200-fold lower in the absence of detectable levels of H2O2. Some of these mutations appear to have been selected for in vivo during pneumococcal infection, perhaps as a consequence of immune pressure or oxidative stress.  相似文献   
10.
NF-κB essential modulator, NEMO, plays a key role in canonical NF-κB signaling induced by a variety of stimuli, including cytokines and genotoxic agents. To dissect the different biochemical and functional roles of NEMO in NF-κB signaling, various mutant forms of NEMO have been previously analyzed. However, transient or stable overexpression of wild-type NEMO can significantly inhibit NF-κB activation, thereby confounding the analysis of NEMO mutant phenotypes. What levels of NEMO overexpression lead to such an artifact and what levels are tolerated with no significant impact on NEMO function in NF-κB activation are currently unknown. Here we purified full-length recombinant human NEMO protein and used it as a standard to quantify the average number of NEMO molecules per cell in a 1.3E2 NEMO-deficient murine pre-B cell clone stably reconstituted with full-length human NEMO (C5). We determined that the C5 cell clone has an average of 4 x 105 molecules of NEMO per cell. Stable reconstitution of 1.3E2 cells with different numbers of NEMO molecules per cell has demonstrated that a 10-fold range of NEMO expression (0.6–6x105 molecules per cell) yields statistically equivalent NF-κB activation in response to the DNA damaging agent etoposide. Using the C5 cell line, we also quantified the number of NEMO molecules per cell in several commonly employed human cell lines. These results establish baseline numbers of endogenous NEMO per cell and highlight surprisingly normal functionality of NEMO in the DNA damage pathway over a wide range of expression levels that can provide a guideline for future NEMO reconstitution studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号