首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   23篇
  国内免费   1篇
  2020年   2篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   9篇
  2013年   5篇
  2012年   14篇
  2011年   11篇
  2010年   10篇
  2009年   17篇
  2008年   16篇
  2007年   12篇
  2006年   12篇
  2005年   14篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1991年   6篇
  1990年   9篇
  1989年   3篇
  1988年   7篇
  1987年   6篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   7篇
  1979年   8篇
  1978年   9篇
  1977年   3篇
  1976年   8篇
  1975年   1篇
  1974年   4篇
  1973年   4篇
  1972年   3篇
  1971年   8篇
  1970年   1篇
  1967年   1篇
  1965年   1篇
  1935年   1篇
排序方式: 共有302条查询结果,搜索用时 31 毫秒
1.
M W McBurney  M S Featherstone  H Kaplan 《Cell》1978,15(4):1323-1330
Hybrid cells formed by the fusion of murine teratocarcinoma and Friend erythroleukemia cells synthesize hemoglobin in the presence of chemical inducers such as dimethylsulfoxide (DMSO). By making use of the fact that the parental teratocarcinoma and Friend cells carried different alleles at the locus coding for the alpha chain of hemoglobin, it was possible to demonstrate that the teratocarcinoma-derived genes for the globin alpha chains are genetically active in hemoglobin-synthesizing hybrid cells. In addition, evidence is presented suggesting that the teratocarcinoma-derived genes for the beta-globin chains may also be expressed in the hybrids. Apparently the teratocarcinoma-derived genome has become reprogrammed to express erythroid functions following fusion of the teratocarcinoma cell to the Friend cell.  相似文献   
2.
In both humans and mice, two genes encode phosphoglycerate kinase, a key enzyme in the glycolytic pathway. The pgk-1 gene is expressed in all somatic cells, is located on the X chromosome, and contains 10 introns. The pgk-2 gene is expressed only in sperm cells, is located on an autosome, and has no introns. The nucleotide sequence of the pgk-2 gene suggests that it arose from pgk-1 more than 100 million years ago by RNA-mediated gene duplication. The pgk-2 gene may, then, be a transcribed retroposon. Thus, gene duplication by retroposition may have been used as a mechanism for evolutionary diversification.  相似文献   
3.
4.
Chromosomal loci that are specifically active in embryonal carcinoma stem cells were cloned from the mouse genome by functional selection. P19 cells, a pluripotent embryonal carcinoma cell line, were transfected with an enhancer trap (a plasmid containing an enhancerless inactive neo gene), and NEO+ transformants were isolated. All of the NEO+ cell lines retained pluripotency and expressed the neo gene. When the cells were induced to differentiate, most of the cell lines continued to express the neo gene, while the neo gene in some cell lines became repressed. From the latter group of cell lines, we have cloned the integrated neo gene plus the flanking cellular DNA sequences. Three of the six cloned DNAs possessed a high NEO+-transforming activity in undifferentiated P19 cells. Among these three, two (015 and 052) were inactive in differentiated P19 cells and NIH 3T3 cells, while the remaining one was active in these differentiated cells. Deletion analysis suggested that both 015 and 052 contain two regulatory elements (promoter and enhancer) of cellular DNA origin. The putative enhancer and promoter are separated by at least 6 kilobases in 015 and 1 kilobase in 052. Therefore, 015 and 052 cloned fragments contain regulatory DNA elements that are specifically active in the embryonal carcinoma stem cells.  相似文献   
5.
When cultured in the presence of either retinoic acid (RA) or dimethyl sulfoxide (DMSO), aggregates of the P19 line of mouse embryonal carcinoma (EC) cells differentiate and the spectrum of cell types formed depends on the drug dose. It is shown here the EC cells rapidly lose their colony-forming ability when cultured as aggregates in the presence of DMSO. This loss of plating efficiency (PE) also occurs rapidly following RA treatment. Loss of PE has been used as a quantitative procedure for assessing the rate of drug-induced differentiation. The relationship between drug dose and loss of PE is much steeper for DMSO than for RA, suggesting that these two drugs affect different stages of the differentiation decision-making apparatus. Mutant EC cell lines (D3 and RAC65) do not differentiate in the presence of drug-inducers (DMSO and RA, respectively). Neither differentiation-deficient mutant has an altered ability to form gap junctions. When D3 and P19 cells were mixed within the same DMSO-treated aggregates, the D3 cells remained undifferentiated and the P19 cells differentiated much less efficiently than if they were cultured in the absence of the D3 cells. When RAC65 and P19 cells were mixed in RA-treated aggregates, each cell responded to the drug as though the other were absent. Thus RA behaves as a cell-autonomous inducer of differentiation, whereas DMSO-induced differentiation seems to be mediated by interactions between neighboring cells.  相似文献   
6.
M W McBurney  G F Whitmore 《Cell》1974,2(3):173-182
This article describes the selection of auxotrophic mutants of Chinese Hamster Ovary (CHO) cells and the genetic and biochemical characterization of two mutant lines. AUXB1 is auxotrophic for glycine, adenosine, and thymidine (GAT-), whereas AUXB3 requires only glycine and adenosine (GA-). These mutants do not complement since hybrid cells formed between them are also auxotrophic. Experiments concerned with the reversion of AUXB1 to prototrophy suggest that a single genetic lesion is responsible for the multiple auxotrophy. Biochemical analysis indicates that the multiple auxotrophy of both AUXB1 and AUXB3 is a result of low levels of intracellular folates in mutant cells. Phenotypic reversion to complete or partial prototrophy can be accomplished by growing these cells in high concentrations of folic or folinic acids. However, neither the folate transport nor the dihydrofolate reductase are defective in mutant cells. Chromatographic analysis of intracellular folate derivatives indicates that while folates extracted from wild type cells exist almost exclusively as polyglutamyl derivates (primarily pentaglutamates), AUXB1 cells contain primarily folate derivates in monoglutamyl form and AUXB3 cells contain mono-, di-, and perhaps some triglutamates. This observation suggests that the enzyme responsible for linking glutamate residues onto intracellular folate derivates is the site of the biochemical lesion in the mutant cells. Our results also suggest that a possible function of polyglutamyl residues is to aid cellular retention of folates.  相似文献   
7.
Embryonal carcinoma (EC) cells are developmentally pluripotential cells which can be induced to differentiate in cell culture to form a wide variety of cell types. To investigate the lineage relationships between cells of different types, we set out to isolate cell lines with multiple but restricted developmental potentials from differentiating cultures of P19 cells, a line of EC. By selecting for differentiated cells capable of anchorage-independent growth, we isolated cell lines which differentiated in high density cultures to form at least two cell types; myocytes that resembled fetal skeletal muscle cells and loose connective tissue cells that secreted large amounts of type I collagen. These results suggest that skeletal myocytes and connective tissue share a common precursor and that stem cells with limited but multiple developmental potentials can be isolated from differentiating cultures of P19 cells.  相似文献   
8.
9.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号