首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   16篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   6篇
  2018年   5篇
  2017年   9篇
  2016年   6篇
  2015年   13篇
  2014年   22篇
  2013年   22篇
  2012年   35篇
  2011年   39篇
  2010年   22篇
  2009年   21篇
  2008年   17篇
  2007年   23篇
  2006年   23篇
  2005年   24篇
  2004年   16篇
  2003年   24篇
  2002年   13篇
  2001年   5篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1996年   1篇
  1993年   1篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1971年   1篇
  1969年   3篇
排序方式: 共有386条查询结果,搜索用时 406 毫秒
1.
ATP-Activated Nonselective Cation Current in NG108-15 Cells   总被引:5,自引:0,他引:5  
Abstract: ATP (1 mM) induced a biphasic increase in intracellular Ca2+ concentration ([Ca2+]i), i.e., an initial transient increase decayed to a level of sustained increase, in NG108-15 cells. The transient increase was inhibited by a phospholipase C inhibitor, 1-[6-[[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), whereas the sustained increase was abolished by removal of external Ca2+. We examined the mechanism of the ATP-elicited sustained [Ca2+]i increase using the fura-2 fluorescent method and the whole-cell patch clamp technique. ATP (1 mM) induced a membrane current with the reversal potential of 12.5 ± 0.8 mV (n = 10) in Tyrode external solution. The EC50 of ATP was ~0.75 mM. The permeability ratio of various cations carrying this current was Na+ (defined as 1) > Li+ (0.92 ± 0.01; n = 5) > K+ (0.89 ± 0.03; n = 6) > Rb+ (0.55 ± 0.02; n = 6) > Cs+ (0.51 ± 0.01; n = 5) > Ca2+ (0.22 ± 0.03; n = 3) > N-methyl-d -glucamine (0.13 ± 0.01; n = 5), suggesting that ATP activated a nonselective cation current. The ATP-induced current was larger at lower concentrations of external Mg2+. ATP analogues that induced the current were 2-methylthio-ATP (2MeSATP), benzoylbenzoic-ATP, adenosine 5′-thiotriphosphate (ATPγS), and adenosine 5′-O-(2-thiodiphosphate), but not adenosine, ADP, α,β-methylene-ATP (AMPCPP), β,γ-methylene-ATP (AMPPCP), or UTP. Concomitant with the current data, 2MeSATP and ATPγS, but not AMPCPP or AMPPCP, increased the sustained [Ca2+]i increase. We conclude that ATP activates a class of Ca2+-permeable nonselective cation channels via the P2z receptor in NG108-15 cells.  相似文献   
2.
3.
Peptide tag systems are a robust biophysical and biochemical method that is widely used for protein detection and purification. Here, we developed a novel tag system termed “HiP4” (histidine plus four amino acids) whose epitope sequence comprises only seven amino acids (HHHDYDI) that partially overlap with the conventional 6x histidine tag (6xHis-tag). We produced a monoclonal antibody against the HiP4 tag that can be used in multiple immunoassays with high specificity and affinity. Using this system, we developed a tandem affinity purification (TAP) and mass spectrometry (TAP-MS) system for comprehensive protein interactome analysis. The integrated use of nickel bead purification followed by HiP4 tag immunoprecipitation made it possible to reduce nonspecific binding and improve selectivity, leading to the recovery of previously unrecognized proteins that interact with hepatitis B virus X (HBx) protein or TAR DNA-binding protein 43 (TARDBP or TDP-43). Our results indicate that this system may be viable as a simple and powerful tool for TAP-MS that can achieve low background and high selectivity in comprehensive protein–protein interaction analyses.  相似文献   
4.
Ligands such as enzyme inhibitors stabilize the native conformation of a protein upon binding to the native state, but some compounds destabilize the native conformation upon binding to the non‐native state. The former ligands are termed “stabilizer chaperones” and the latter ones “destabilizer chaperones.” Because the stabilization effects are essential for the medical chaperone (MC) hypothesis, here we have formulated a thermodynamic system consisting of a ligand and a protein in its native‐ and non‐native state. Using the differential scanning fluorimetry and the circular dichroism varying the urea concentration and temperature, we found that when the coenzyme NADP+ was absent, inhibitors such as isolithocholic acid stabilized the aldo–keto reductase AKR1A1 upon binding, which showed actually the three‐state folding, but destabilized AKR1B10. In contrast, in the presence of NADP+, they destabilized AKR1A1 and stabilized AKR1B10. To explain these phenomena, we decomposed the free energy of stabilization (ΔΔG) into its enthalpy (ΔΔH) and entropy (ΔΔS) components. Then we found that in a relatively unstable protein showing the three‐state folding, native conformation was stabilized by the negative ΔΔH in association with the negative ΔΔS, suggesting that the stabilizer chaperon decreases the conformational fluctuation of the target protein or increase its hydration. However, in other cases, ΔΔG was essentially determined by the delicate balance between ΔΔH and ΔΔS. The proposed thermodynamic formalism is applicable to the system including multiple ligands with allosteric interactions. These findings would promote the development of screening strategies for MCs to regulate the target conformations.  相似文献   
5.
An excessive accumulation of fat in the liver leads to chronic liver injury such as non-alcoholic fatty liver disease (NAFLD), which is an important medical problem affecting many populations worldwide. Oxidative stress has been implicated in the pathogenesis of NAFLD, but the exact nature of active species and the underlying mechanisms have not been elucidated. It was previously found that the administration of free radical-generating azo compound to mice induced accumulation of fat droplet in the liver. The present study was performed aiming at elucidating the changes of lipid classes and fatty acid composition and also measuring the levels of lipid peroxidation products in the liver induced by azo compound administration to mouse. The effects of azo compound on the liver were compared with those induced by high fat diet, a well-established cause of NAFLD. Azo compounds given to mice either by intraperitoneal administration or by dissolving to drinking water induced triacylglycerol (TG) increase and concomitant phospholipid decrease in the liver, whose pattern was quite similar to that induced by high fat diet. Lipid peroxidation products such as hydroxyoctadecadienoic acid and hydroxyeicosatetraenoic acid were increased in the liver in association with the increase in TG. These results show that free radicals as well as high fat diet induce fatty liver by similar mechanisms, in which lipid peroxidation may be involved.  相似文献   
6.
7.
Human herpesvirus 6 (HHV-6) is a T-cell-tropic betaherpesvirus. A glycoprotein (g) complex that is unique to HHV-6, gH/gL/gQ1/gQ2, is a viral ligand for its cellular receptor, human CD46. However, whether complex formation or one component of the complex is required for CD46 binding and how the complex is transported in cells are open questions. Furthermore, in HHV-6-infected cells the gQ1 protein modified with N-linked glycans is expressed in two forms with different molecular masses: an 80-kDa form (gQ1-80K) and a 74-kDa form (gQ1-74K). Only gQ1-80K, but not gQ1-74K, forms the complex with gQ2, gH, and gL, and this four-component complex is incorporated into mature virions. Here, we characterized the molecular context leading to the maturation of gQ1 by expressing combinations of the individual gH/gL/gQ1/gQ2 components in 293T cells. Surprisingly, only when all four molecules were expressed was a substantial amount of gQ1-80K detected, indicating that all three of the other molecules (gQ2, gH, and gL) were necessary and sufficient for gQ1 maturation. We also found that only the tetrameric complex, and not its subsets, binds to CD46. Finally, a gQ2-null virus constructed in the BAC (bacterial artificial chromosome) system could not be reconstituted, indicating that gQ2 is essential for virus growth. These results show that gH, gL, gQ1, and gQ2 are all essential for the trafficking and proper folding of the gH/gL/gQ1/gQ2 complex and, thus, for HHV-6 infection.  相似文献   
8.
We have prepared palmitoyl sphingomyelin (PSM) analogs in which either the 2-NH was methylated to NMe, the 3-OH was methylated to OMe, or both were methylated simultaneously. The aim of the study was to determine how such modifications in the membrane interfacial region of the molecules affected interlipid interactions in bilayer membranes. Measuring DPH anisotropy in vesicle membranes prepared from the SM analogs, we observed that methylation decreased gel-phase stability and increased fluid phase disorder, when compared to PSM. Methylation of the 2-NH had the largest effect on gel-phase instability (T(m) was lowered by ~7°C). Atomistic molecular dynamics simulations showed that fluid phase bilayers with methylated SM analogs were more expanded but thinner compared to PSM bilayers. It was further revealed that 3-OH methylation dramatically attenuated hydrogen bonding also via the amide nitrogen, whereas 2-NH methylation did not similarly affect hydrogen bonding via the 3-OH. The interactions of sterols with the methylated SM analogs were markedly affected. 3-OH methylation almost completely eliminated the capacity of the SM analog to form sterol-enriched ordered domains, whereas the 2-NH methylated SM analog formed sterol-enriched domains but these were less thermostable (and thus less ordered) than the domains formed by PSM. Cholestatrienol affinity to bilayers containing methylated SM analogs was also markedly reduced as compared to its affinity for bilayers containing PSM. Molecular dynamics simulations revealed further that cholesterol's bilayer location was deeper in PSM bilayers as compared to the location in bilayers made from methylated SM analogs. This study shows that the interfacial properties of SMs are very important for interlipid interactions and the formation of laterally ordered domains in complex bilayers.  相似文献   
9.
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd12), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient‐sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi‐starved mgd1‐2 leaves, biogenesis of thylakoid‐like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress‐induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light‐harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1‐2 mutant. Moreover, the reduced expression of nuclear‐ and plastid‐encoded photosynthetic genes observed in the mgd1‐2 mutant under Pi‐sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid‐ and nuclear‐encoded photosynthetic genes, independently of photosynthesis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号