首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   5篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1978年   1篇
  1960年   3篇
排序方式: 共有39条查询结果,搜索用时 171 毫秒
1.
2.
Genetic selection and DNA sequences of 4.5S RNA homologs.   总被引:8,自引:2,他引:6       下载免费PDF全文
S Brown  G Thon    E Tolentino 《Journal of bacteriology》1989,171(12):6517-6520
A general strategy for cloning the functional homologs of an Escherichia coli gene was used to clone homologs of 4.5S RNA from other bacteria. The genes encoding these homologs were selected by their ability to complement a deletion of the gene for 4.5S RNA. DNA sequences of the regions encoding the homologs were determined. Since this approach does not require that the homologous genes hybridize with probes generated from the E. coli sequence, the sequences of the homologs were not all similar to the sequence of the E. coli gene. Despite the dissimilarity of the primary sequences of some of the homologs, all could be folded to obtain a similar structure.  相似文献   
3.
4.
5.
Comprehension of ecological processes in marine animals requires information regarding dynamic vertical habitat use. While many pelagic predators primarily associate with epipelagic waters, some species routinely dive beyond the deep scattering layer. Actuation for exploiting these aphotic habitats remains largely unknown. Recent telemetry data from oceanic whitetip sharks (Carcharhinus longimanus) in the Atlantic show a strong association with warm waters (>20°C) less than 200 m. Yet, individuals regularly exhibit excursions into the meso‐ and bathypelagic zone. In order to examine deep‐diving behavior in oceanic whitetip sharks, we physically recovered 16 pop‐up satellite archival tags and analyzed the high‐resolution depth and temperature data. Diving behavior was evaluated in the context of plausible functional behavior hypotheses including interactive behaviors, energy conservation, thermoregulation, navigation, and foraging. Mesopelagic excursions (= 610) occurred throughout the entire migratory circuit in all individuals, with no indication of site specificity. Six depth‐versus‐time descent and ascent profiles were identified. Descent profile shapes showed little association with examined environmental variables. Contrastingly, ascent profile shapes were related to environmental factors and appear to represent unique behavioral responses to abiotic conditions present at the dive apex. However, environmental conditions may not be the sole factors influencing ascents, as ascent mode may be linked to intentional behaviors. While dive functionality remains unconfirmed, our study suggests that mesopelagic excursions relate to active foraging behavior or navigation. Dive timing, prey constituents, and dive shape support foraging as the most viable hypothesis for mesopelagic excursions, indicating that the oceanic whitetip shark may regularly survey extreme environments (deep depths, low temperatures) as a foraging strategy. At the apex of these deep‐water excursions, sharks exhibit a variable behavioral response, perhaps, indicating the presence or absence of prey.  相似文献   
6.
7.
Environmental Biology of Fishes - The ichthyofauna of a large lake located in one of the biggest urban centers in Southern South America was studied for 15 years. Variations in...  相似文献   
8.
The immunological synapse is a stable intercellular structure that specializes in substance and signal transfer from one immune cell to another. Its formation is regulated in part by the diffusion of adhesion and signaling molecules into, and their binding of countermolecules in the contact area. The stability of immunological synapses allows receptor-ligand interactions to approximate chemical equilibrium despite other dynamic aspects. We have developed a mathematical model that describes the coupled reaction-diffusion process in an established immunological synapse. In this study, we extend a previously described contact area fluorescence recovery after photobleaching (FRAP) experiment to test the validity of the model. The receptor binding activity and lateral mobility of fluorescently labeled, lipid-anchored ligands in the bilayer resulted in their accumulation, as revealed by a much higher fluorescence intensity inside the contact area than outside. After complete photobleaching of the synapse, fluorescence recovery requires ligands to dissociate and rebind, and to diffuse in and out of the contact area. Such a FRAP time course consequently provides information on reaction and diffusion, which can be extracted by fitting the model solution to the data. Surprisingly, reverse rates in the two-dimensional contact area were at least 100-fold slower than in three-dimensional solution. As previously reported in immunological synapses, a significant nonrecoverable fraction of fluorescence was observed with one of two systems studied, suggesting some ligands either dissociated or diffused much more slowly compared with other ligands in the same synapse. The combined theory and experiment thus provides a new method for in situ measurements of kinetic rates, diffusion coefficients, and nonrecoverable fractions of interacting molecules in immunological synapses and other stable cell-bilayer junctions.  相似文献   
9.
Comparative mutagenesis of 1,N6-ethenoadenine (εA) and 8-oxoguanine (8-oxoG), two endogenous DNA lesions that are also formed by exogenous DNA damaging agents, have been evaluated in HeLa and xeroderma pigmentosum variant (XPV) cell extracts. Two-dimensional gel electrophoresis of the duplex M13mp2SV vector containing these lesions established that there was significant inhibition of replication fork movement past εA, whereas 8-oxoG caused only minor stalling of fork progression. In extracts of HeLa cells, εA was weakly mutagenic inducing all three base substitutions in approximately equal frequency, whereas 8-oxoG was 10-fold more mutagenic inducing primarily G→T transversions. These data suggest that 8-oxoG is a miscoding lesion that presents a minimal, if any, block to DNA replication in human cells. We hypothesized that bypass of εA proceeded principally by an error-free mechanism in which the undamaged strand was used as a template, since this lesion strongly blocked fork progression. To examine this, we determined the sequence of replication products derived from templates in which a G was placed across from the εA. Consistent with our hypothesis, 93% of the progeny were derived from replication of the undamaged strand. When translesion synthesis occurred, εA→T mutations increased 3-fold in products derived from the mismatched εA: G construct compared with those derived from the εA: T construct. More efficient repair of εA in the εA: T construct may have been responsible for lower mutation frequency. Primer extension studies with purified pol η have shown that this polymerase is highly error-prone when bypassing εA. To examine if pol η is the primary mutagenic translesion polymerase in human cells, we determined the lesion bypass characteristics of extracts derived from XPV cells, which lack this polymerase. The εA: T construct induced εA→G and εA→C mutant frequencies that were approximately the same as those observed using the HeLa extracts. However, εA→T events were increased 5-fold relative to HeLa extracts. These data support a model in which pol η-mediated translesion synthesis past this adduct is error-free in the context of semiconservative replication in the presence of fidelity factors such as PCNA.  相似文献   
10.
Doxorubicin (DXR) is a widely used chemotherapeutic anticancer agent that has potent activity against several solid and non-solid human malignant tumors, including childhood malignancies. However, DXR has serious toxic effects on tissues with rapid cell cycles, such as myeloid and lymphatic tissues, intestinal mucosa, testes and ovaries. In the present study, the short- and medium-term toxic effects of DXR on the reproductive system of male Wistar rats were evaluated using morphometric and stereological tools to quantify damage to the seminiferous epithelium. Adult male Wistar rats were treated with dose of 7.5?mg/kg of DXR and were sacrificed at seven, 14, 21 and 28?days after treatment. The testes were fixed in glutaraldehyde solution, routinely processed and embedded in plastic for evaluation under a light microscope. A significant reduction in testis weight was found as a result of massive germ cell apoptosis. Differences in comparison to the control group were found in the relative frequency of all stages of the seminiferous epithelium cycle, with significant differences for stages VIII–XI. Apoptosis significantly decreased the number of pachytene spermatocytes in the stages evaluated (I, II–III and VIII) at seven and 14?days. At 21 and 28?days after treatment, the testes exhibited the massive loss of germ cells that resulted in a missing cell layer. Moreover, reductions in the height of seminiferous tubules, tubular diameter and tubular compartment as well as an increase in the intertubular compartment were found in the period studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号