首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   3篇
  2021年   3篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   6篇
  2012年   8篇
  2011年   11篇
  2010年   11篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1998年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
1.
The lipid-linked precursor ofN-type glycoprotein oligosaccharides was isolated from porcine thyroid microsomes after in cubation with UDP[3H] Glucose. The carbohydrate was released from dolichol pyrophosphate by mild acid hydrolysis, purified by gel filtration and characterized by 500-MHz1H-NMR spectroscopy in combination with enzymatic degradation. The parent oligosaccharide was found to be Glc3Man9Glc-NAc2. The three glucose residues are present in the linear sequence Glcα1-2Glα1-3 Glc, the latter being α(1-3)-linked to one of the mannose residues. In order to establish the branch location of the triglucosyl unit, the parent compound was digested with jack-bean α-mannosidase. The oligosaccharide product was purified by gel filtration, and identified by1H-NMR as Glc3Man5GlcNAc2 lacking the mannose residues A, D2, B and D3. Therefore, the structure of the precursor oligosaccharide is as follows: $$\begin{gathered} c b a D_1 C 4 \hfill \\ Glc\alpha 1 - 2Glc\alpha 1 - 3Glc\alpha 1 - 3Man\alpha 1 - 2Man\alpha 1 - 2Man\alpha 1 \hfill \\ 3 \swarrow 3 2 1 \hfill \\ Man\alpha 1 - 2Man\alpha 1 Man\beta 1 - 4GlcNAc\beta 1 - 4GlcNAc \hfill \\ D_{2 } A 3 6 \hfill \\ Man\alpha 1 \hfill \\ 6 \hfill \\ Man\alpha 1 - 2Man\alpha 1 \nwarrow 4 \hfill \\ D_3 B \hfill \\ \end{gathered} $$   相似文献   
2.
Changes in intrathoracic pressure (ITP) can influence cardiac performance by affecting ventricular loading conditions. Because both systemic venous return and factors determining left ventricular (LV) ejection may vary over the cardiac cycle, phasic increases in ITP may differentially affect preload or afterload if delivered at specific points within the cardiac cycle. We studied the hemodynamic effects of cardiac cycle-specific increases in ITP (pulses) delivered by a high-frequency jet ventilator in an acute closed-chested canine model (n = 11), using electromagnetic flow probes to measure biventricular stroke volume. Measurements were taken during a control condition after the induction of acute ventricular failure (AVF) by propranolol hydrochloride and volume infusion. ITP was independently varied without changing lung volume by the inflation of thoracoabdominal binders. Although synchronous pulses had minimal hemodynamic effects in unbound controls, binding pulses timed to occur in early diastole resulted in decreases in LV filling pressure and left ventricular stroke volume (SVlv) (P less than 0.05). In the AVF condition, pulses increased LV performance, evidenced by increases in SVlv (P less than 0.01), despite decreases in LV filling pressure (P less than 0.05). This effect is maximized by binding and by timing the pulses to occur in systole. We conclude that cardiac cycle-specific increases in ITP can significantly affect cardiac performance. These effects appear to be related to the ability of such timed pulses to selectively affect LV preload and afterload.  相似文献   
3.
We studied the cardiovascular effects of phasic increases in intrathoracic pressure (ITP) by high-frequency jet ventilation in an acute pentobarbital-anesthetized intact canine model both before and after the induction of acute ventricular failure by large doses of propranolol. Chest and abdominal pneumatic binders were used to further increase ITP. Respiratory frequency, percent inspiratory time, mean ITP, and swings in ITP throughout the respiratory cycle were independently varied at a constant-circulating blood volume. We found that pertubations in mean ITP induced by ventilator adjustments accounted for all observable steady-state hemodynamic changes independent of respiratory frequency, inspiratory time, or phasic respiratory swings in ITP. Changes in ITP were associated with reciprocal changes in both intrathoracic vascular pressures (P less than 0.01) and blood volume (P less than 0.01). When cardiac function was normal, left ventricular (LV) stroke volume decreased, whereas in acute ventricular failure, LV stroke volume increased in response to increasing ITP when apneic LV filling pressure was high (greater than or equal to 17 Torr) and did not change if apneic LV filling pressure was low (less than or equal to 12 Torr). However, in all animals in acute ventricular failure, LV stroke work increased with increasing ITP. Our study demonstrates that the improved cardiac function seen with increasing ITP in acute ventricular failure is dependent upon adequate LV filling and decreased LV afterload in a manner analogous to that seen with arterial vasodilator therapy in heart failure.  相似文献   
4.
Positive end-expiratory pressure (PEEP) may impair extrapulmonary organ function. However, the effects of PEEP on the liver are unclear. We tested the hypothesis that at a constant cardiac output (CO), PEEP does not induce changes in hepatic blood flow (QL) and parenchymal performance. In splenectomized, close-chested canine preparations (group I, n = 6), QL was derived as hepatic outflow using electromagnetic flow probes (QLemf), and hepatic performance was defined by extraction and clearance of indocyanine green (ICG). In a noninvasive model (group II, n = 7), the effects of PEEP on hepatic performance alone were similarly analyzed. Measurements were taken during intermittent positive-pressure ventilation (IPPV1), after addition of 10 cmH2O PEEP to IPPV (PEEP1), during continued PEEP but after return of CO to IPPV1 levels by intravascular volume infusions (PEEP2), and after removal of both PEEP and excess blood volume (IPPV2). Phasic inspiratory decreases in QLemf present during positive-pressure ventilation were not increased during either PEEP1 or PEEP2. Mean QLemf decreased proportionately with CO during PEEP1 (P less than 0.05), but was restored to IPPV1 levels in a parallel fashion with CO during PEEP2. The ICG pharmacokinetic responses to PEEP were complex, with differential effects on extraction and clearance. Despite this, hepatic performance was not imparied in either group. we conclude that global QL reductions during PEEP are proportional to PEEP-induced decreases in CO and are preventable by returning CO to pre-PEEP levels by intravascular volume infusions. However, covarying changes in blood volume and hepatic outflow resistance may independently modulate hepatic function.  相似文献   
5.
In the anesthetized closed-chest canine model of Gram-negative endotoxemia (n = 10), we tested the hypothesis that the effect of cardiac cycle-specific intrathoracic pressure pulses delivered by a heart rate-(HR) synchronized high-frequency jet ventilator (sync HFJV) on systolic ventricular performance is dependent on the level of preload. To control for HFJV frequency, hemodynamic responses were also measured at fixed frequency within 15% of HR (async HFJV). Biventricular stroke volumes (SV) were measured by electromagnetic flow probes. Measurements were made before (baseline) and 30 min after infusion of 1 mg/kg Escherichia coli endotoxin (serotype 055:B5) and then after 2 mg/kg propranolol at both low (less than 10 mmHg) left ventricular filling pressure (LVFP) and high (greater than 10 mmHg) LVFP. Ventricular function curves, aortic pressure-flow (P-Q) relationships, and venous return (VR) curves were analyzed. We found that endotoxin did not alter VR curves but shifted the aortic P-Q curves to the left with pressure on the x-axis (P less than 0.05). Volume loading increased SV (P less than 0.01) because of a rightward shift of the VR curve. No specific differences occurred with either sync or async HFJV during endotoxin, presumably because of preserved VR and shifted aortic P-Q. The lack of cardiac cycle-specific effects of ITP appears to be due to the selective endotoxin-induced changes in peripheral vasomotor tone that counterbalance any depressed myocardial contractility.  相似文献   
6.
7.
8.

Introduction  

There is growing evidence that interleukin 17 (IL-17) producing T cells are involved in the pathogenesis of systemic lupus erythematosus (SLE). Previous studies showed that increased percentages of T-cell subsets expressing the costimulatory molecules CD80 and CD134 are associated with disease activity and renal involvement in SLE. The aim of this study was to investigate the distribution and phenotypical characteristics of IL-17 producing T-cells in SLE, in particular in patients with lupus nephritis, with emphasis on the expression of CD80 and CD134.  相似文献   
9.
Two experiments were designed to test whether wild house mice discriminate between olfactory cues from different kin and, if so, whether given preferences would relate to actual reproductive decisions. Experimental animals were mice born to the offspring of wild-caught house mice. Litter-mates stayed together until 60 d of age and were then housed individually. In a choice test, animals were placed in the middle of an arena with 4 openings which led to small cages containing bedding material from opposite-sex animals of known kinship (full-sib, cousin, unrelated) or clean material. Test animals (11 oestrous females, 11 males tested with oestrous females' bedding, 8 males tested with material from non-oestrous females) preferred conspecific to control bedding. Males tested with oestrous females' bedding significantly preferred unrelated to full-sib odours. In a second experiment, 34 males were each mated simultaneously to 3 females (sister, cousin, unrelated) and these groups were then housed together for 5, 10, and 15 d. Females were checked for litters during the next 20 d. Reproductive rate increased significantly in the 15 d cohabitation group, and significantly more cousin and unrelated females than sisters gave birth to a litter.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号