排序方式: 共有78条查询结果,搜索用时 0 毫秒
1.
Qi X Kaneda M Chen J Geitmann A Zheng H 《The Plant journal : for cell and molecular biology》2011,68(2):234-248
Cytokinesis and cell polarity are supported by membrane trafficking from the trans-Golgi network (TGN), but the molecular mechanisms that promote membrane trafficking from the TGN are poorly defined in plant cells. Here we show that TRAPPII in Arabidopsis regulates the post-Golgi trafficking that is crucial for assembly of the cell plate and cell polarity. Disruptions of AtTRS120 or AtTRS130, two genes encoding two key subunits of TRAPPII, result in defective cytokinesis and cell polarity in embryogenesis and seedling development. In attrs120 and attrs130, the organization and trafficking in the endoplasmic reticulum (ER)-Golgi interface are normal. However, post-Golgi trafficking to the cell plate and to the cell wall, but not to the vacuole, is impaired. Furthermore, TRAPPII is required for the selective transport of PIN2, but not PIN1, to the plasma membrane. We revealed that AtTRS130 is co-localized with RAB-A1c. Expression of constitutively active RAB-A1c partially rescues attrs130. RAB-A1c, which resides at the TGN, is delocalized to the cytosol in attrs130. We propose that TRAPPII in Arabidopsis acts upstream of Rab-A GTPases in post-Golgi membrane trafficking in plant cells. 相似文献
2.
Daniel P. Mould Ulf Bremberg Allan M. Jordan Matthis Geitmann Alison E. McGonagle Tim C.P. Somervaille Gary J. Spencer Donald J. Ogilvie 《Bioorganic & medicinal chemistry letters》2017,27(20):4755-4759
As part of our ongoing efforts to develop reversible inhibitors of LSD1, we identified a series of 4-(pyrrolidin-3-yl)benzonitrile derivatives that act as successful scaffold-hops of the literature inhibitor GSK-690. The most active compound, 21g, demonstrated a Kd value of 22 nM and a biochemical IC50 of 57 nM. In addition, this compound displayed improved selectivity over the hERG ion channel compared to GSK-690, and no activity against the related enzymes MAO-A and B. In human THP-1 acute myeloid leukaemia cells, 21g was found to increase the expression of the surrogate cellular biomarker CD86. This work further demonstrates the versatility of scaffold-hopping as a method to develop structurally diverse, potent inhibitors of LSD1. 相似文献
3.
Sambu Seo Anne Beck Caroline Matthis Alexander Genauck Tobias Banaschewski Arun L.W. Bokde Uli Bromberg Christian Büchel Erin Burke Quinlan Herta Flor Vincent Frouin Hugh Garavan Penny Gowland Bernd Ittermann Jean‐Luc Martinot Marie‐Laure Paillre Martinot Frauke Nees Dimitri Papadopoulos Orfanos Luise Poustka Sarah Hohmann Juliane H. Frhner Michael N. Smolka Henrik Walter Robert Whelan Sylvane Desrivires Andreas Heinz Gunter Schumann Klaus Obermayer 《Addiction biology》2019,24(4):787-801
Abnormalities across different domains of neuropsychological functioning may constitute a risk factor for heavy drinking during adolescence and for developing alcohol use disorders later in life. However, the exact nature of such multi‐domain risk profiles is unclear, and it is further unclear whether these risk profiles differ between genders. We combined longitudinal and cross‐sectional analyses on the large IMAGEN sample (N ≈ 1000) to predict heavy drinking at age 19 from gray matter volume as well as from psychosocial data at age 14 and 19—for males and females separately. Heavy drinking was associated with reduced gray matter volume in 19‐year‐olds' bilateral ACC, MPFC, thalamus, middle, medial and superior OFC as well as left amygdala and anterior insula and right inferior OFC. Notably, this lower gray matter volume associated with heavy drinking was stronger in females than in males. In both genders, we observed that impulsivity and facets of novelty seeking at the age of 14 and 19, as well as hopelessness at the age of 14, are risk factors for heavy drinking at the age of 19. Stressful life events with internal (but not external) locus of control were associated with heavy drinking only at age 19. Personality and stress assessment in adolescents may help to better target counseling and prevention programs. This might reduce heavy drinking in adolescents and hence reduce the risk of early brain atrophy, especially in females. In turn, this could additionally reduce the risk of developing alcohol use disorders later in adulthood. 相似文献
4.
Structural Changes of Cell Wall and Lignifying Enzymes Modulations in Bean Roots in Response to Copper Stress 总被引:3,自引:0,他引:3
Houda Bouazizi Hager Jouili Anja Geitmann Ezzeddine El Ferjani 《Biological trace element research》2010,136(2):232-240
Fourteen-day-old bean seedlings were cultured in nutrient solution containing Cu2+ ions at various concentrations (50 and 75 μM of CuSO4) for 3 days. This excess of copper induced a reduction in the water volume absorbed by the plants. Moreover, this reduction
was accompanied by an increase of the amount of copper taken up by the roots. Analysis by native gel electrophoresis of cell
wall peroxidase activities in the roots revealed a stimulation of two anionic isoforms (A2 and A3) under cupric stress conditions. Moreover, the activity of phenylalanine ammonia lyase (EC. 4.3.1.5), which plays an important
role in plant defense, was enhanced. Copper-treated bean roots showed modifications in the cell walls of various tissues.
Label for lignin, callose, and suberin with berberine-aniline blue revealed abnormal cell wall thickenings in the endodermis,
the phloem, and the xylem, especially in plants treated with 75 μM CuSO4. 相似文献
5.
Experiments have shown that pollen tubes grow in an oscillatory mode, the mechanism of which is poorly understood. We propose a theoretical growth model of pollen tubes exhibiting such oscillatory behaviour. The pollen tube and the surrounding medium are represented by two immiscible fluids separated by an interface. The physical variables are pressure, surface tension, density and viscosity, which depend on relevant biological quantities, namely calcium concentration and thickness of the cell wall. The essential features generally believed to control oscillating growth are included in the model, namely a turgor pressure, a viscous cell wall which yields under pressure, stretch-activated calcium channels which transport calcium ions into the cytoplasm and an exocytosis rate dependent on the cytosolic calcium concentration in the apex of the cell. We find that a calcium dependent vesicle recycling mechanism is necessary to obtain an oscillating growth rate in our model. We study the variation in the frequency of the growth rate by changing the extracellular calcium concentration and the density of ion channels in the membrane. We compare the predictions of our model with experimental data on the frequency of oscillation versus growth speed, calcium concentration and density of calcium channels. 相似文献
6.
Pollen tubes of Nicotiana tabacum and Petunia hybrida show pulsatory growth. Phases of slow growth lasting minutes are interrupted by pulse-like elongations lasting 10–20 seconds involving an increase of growth rate by up to 24-fold. Inhibition of dictyosome activity with brefeldin A or monensin did not result in an inhibition of pulsatory growth but eventually stopped pollen tube elongation. In contrast to this the inhibition of the cytoskeletal elements with cytochalasin D and colchicine caused the pollen tubes to abandon the pulse-like elongations. It was concluded that the activity of the dictyosomes does not have a controlling function in the mechanism of pulsatory growth, even though it is necessary for pollen tube elongation, since cell wall material is provided by secretory vesicles deriving from the Golgi apparatus. In contrast the cytoskeletal elements, actin and microtubules, seem to play an important regulatory role in the pulse-like elongations. In addition, it was observed that during the experiments several pollen tubes burst upon the completion of a pulse-like expansion, indicating on the one hand that the internal turgor is the driving force of the pulse-like expansions. On the other hand, the bursting shows that the pollen tube cell wall is rather weak at the end of a pulse, indicating that at this point of time it is either thinner or less stable than during the slow growth phase or at the beginning of a pulse. 相似文献
7.
Divya Kesters Andrew J Thompson Marijke Brams René van Elk Radovan Spurny Matthis Geitmann Jose M Villalgordo Albert Guskov U Helena Danielson Sarah C R Lummis Chris Ulens 《EMBO reports》2013,14(1):49-56
The 5‐HT3 receptor is a pentameric serotonin‐gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti‐emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5‐HT3 receptor. In the serotonin‐bound structure, we observe hydrophilic interactions with loop E‐binding site residues, which might enable transitions to channel opening. In the granisetron‐bound structure, we observe a critical cation–π interaction between the indazole moiety of the ligand and a cationic centre in loop D, which is uniquely present in the 5‐HT3 receptor. We use a series of chemically tuned granisetron analogues to demonstrate the energetic contribution of this electrostatic interaction to high‐affinity ligand binding in the human 5‐HT3 receptor. Our study offers the first structural perspective on recognition of serotonin and antagonism by anti‐emetics in the 5‐HT3 receptor. 相似文献
8.
9.
Daniel P. Mould Ulf Bremberg Allan M. Jordan Matthis Geitmann Alba Maiques-Diaz Alison E. McGonagle Helen F. Small Tim C.P. Somervaille Donald Ogilvie 《Bioorganic & medicinal chemistry letters》2017,27(14):3190-3195
A series of reversible inhibitors of lysine specific demethylase 1 (LSD1) with a 5-hydroxypyrazole scaffold have been developed from compound 7, which was identified from the patent literature. Surface plasmon resonance (SPR) and biochemical analysis showed it to be a reversible LSD1 inhibitor with an IC50 value of 0.23 µM. Optimisation of this compound by rational design afforded compounds with Kd values of <10 nM. In human THP-1 cells, these compounds were found to upregulate the expression of the surrogate cellular biomarker CD86. Compound 11p was found to have moderate oral bioavailability in mice suggesting its potential for use as an in vivo tool compound. 相似文献
10.
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. 相似文献