首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   12篇
  2021年   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   3篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   7篇
  2009年   1篇
  2006年   2篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2000年   6篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有57条查询结果,搜索用时 31 毫秒
1.
Anomeric aminobenzylglycosides of Neu5Ac were coupled with the polyacrylate carrier and a number of synthetic polyvalent sialosides obtained were investigated as inhibitors of influenza virus attachment. The inhibitory activity of polymeric sialosides is highly dependent upon the Neu5Ac residue content and the nature of the carrier. The polyacrylic acid based polymer bearing 10 mol% of Neu5Ac is 3 orders of magnitude more potent inhibitor than the corresponding monovalent benzylsialoside and considerably more active than fetuin.  相似文献   
2.
3.
Influenza A viruses possess both hemagglutinin (HA), which is responsible for binding to the terminal sialic acid of sialyloligosaccharides on the cell surface, and neuraminidase (NA), which contains sialidase activity that removes sialic acid from sialyloligosaccharides. Interplay between HA receptor-binding and NA receptor-destroying sialidase activity appears to be important for replication of the virus. Previous studies by others have shown that influenza A viruses lacking sialidase activity can undergo multiple cycles of replication if sialidase activity is provided exogenously. To investigate the sialidase requirement of influenza viruses further, we generated a series of sialidase-deficient mutants. Although their growth was less efficient than that of the parental NA-dependent virus, these viruses underwent multiple cycles of replication in cell culture, eggs, and mice. To understand the molecular basis of this viral growth adaptation in the absence of sialidase activity, we investigated changes in the HA receptor-binding affinity of the sialidase-deficient mutants. The results show that mutations around the HA receptor-binding pocket reduce the virus's affinity for cellular receptors, compensating for the loss of sialidase. Thus, sialidase activity is not absolutely required in the influenza A virus life cycle but appears to be necessary for efficient virus replication.  相似文献   
4.
5.
6.
Gangliosides are not essential for influenza virus infection   总被引:1,自引:0,他引:1  
Sialic acid is known to be an essential part of influenza virus receptors, but the specific identity of the receptor molecules on target cells is still not defined. In particular, the relative roles played by cellular sialylglycoproteins and gangliosides in virus entry into target cells remain unclear. To test whether gangliosides are essential for virus infection, we used the GM-95 mutant cell line of mouse B16 melanoma which lacks synthesis of major glycosphingolipids including gangliosides. We found that GM-95 cells grown in serum-containing medium harboured substantial amounts of ganglioside receptors for influenza virus due to incorporation of serum gangliosides. To obtain ganglioside-free cells, we adapted GM-95 cells to growth in defined serum-free (sf) medium. Ganglioside-free GM-95-sf cells could be infected by avian and human influenza A viruses and produced infectious virus progeny demonstrating that gangliosides were neither absolutely necessary for the early nor for the late stages of the infection. However, sensitivity of the GM-95-sf cells to the viruses was 2–4 times lower than that of the ganglioside-containing parent cell line. Further studies are needed to specify whether this effect was due to the lack of gangliosides, neutral glycosphingolipids, or other effects.  相似文献   
7.
The tropane alkaloid (TA) scopolamine is suggested to protect Brugmansia suaveolens (Solanaceae) against herbivorous insects. To test this prediction in a natural environment, scopolamine was induced by methyl jasmonate (MJ) in potted plants which were left 10?days in the field. MJ-treated plants increased their scopolamine concentration in leaves and herbivory decreased. These findings suggest a cause?Ceffect relationship. However, experiments in laboratory showed that scopolamine affect differently the performance of the specialist larvae of the ithomiine butterfly Placidina euryanassa (C. Felder & R. Felder) and the generalist fall armyworm Spodoptera frugiperda (J. E. Smith): the specialist that sequester this TA from B. suaveolens leaves was not negatively affected, but the generalist was. Therefore, scopolamine probably acts only against insects that are not adapted to TAs. Other compounds that are MJ elicited may also play a role in plant resistance against herbivory by generalist and specialist insects, and deserve future investigations.  相似文献   
8.
Nine small artificial dams located in different climatic regions of Kenya were studied. The local communities use the stored water for various purposes, such as irrigation, domestic use, watering of livestock and cage fish farming. Such intense use is commonly accompanied by eutrophication, including fast growth of cyanobacteria, which at times produce cyanotoxins threatening human and animal life. We studied the pelagic community, analysed abiotic variables and identified microcystins by means of high performance liquid chromatography and ELISA kits at monthly intervals over a period of one year. Mass spectrometry (MALDI-TOF MS) was used to identify structural variants of microcystins by their protonated masses (M + H). Three dams contained microcystins, with the highly toxic Microcystin-LR being identified as the most prominent substance. Cell content of the toxin varied from 7.2 to 686.7 fg cell?1. Basic limnological variables that indicate the probability of toxin presence were also recorded. Non-parametric Mann–Whitney U-test revealed significant differences in soluble reactive phosphorous, nitrate-N, water depth, total hardness and post-Nauplii stages sampled between toxin-producing and non-toxin-producing dams. Although most of the samples did not contain high amounts of cyanobacteria, the cyanotoxin-problem was evident, suggesting the need for regular cyanotoxin monitoring programs.  相似文献   
9.
H3N2 human influenza viruses that are resistant to horse, pig, or rabbit serum possess unique amino acid mutations in their hemagglutinin (HA) protein. To determine the molecular mechanisms of this resistance, we characterized the receptor-binding properties of these mutants by measuring their affinity for total serum protein inhibitors and for soluble receptor analogs. Pig serum-resistant variants displayed a markedly decreased affinity for total pig serum sialylglycoproteins (which contain predominantly 2-6 linkage between sialic acid and galactose residues) and for the sialyloligosaccharide 6′-sialyl(N-acetyllactosamine). These properties correlated with the substitution 186S→I in HA1. The major inhibitory activity in rabbit serum was found to be a β inhibitor with characteristics of mannose-binding lectins. Rabbit serum-resistant variants exhibited decreased sensitivity to this inhibitor due to the loss of a glycosylation sequon at positions 246 to 248 of the HA. In addition to a somewhat reduced affinity for 6′-sialyl(N-acetyllactosamine)-containing receptors, horse serum-resistant variants lost the ability to bind the viral neuraminidase-resistant 4-O-acetylated sialic acid moieties of equine α2-macroglobulin because of the mutation 145N→K/D in their HA1. These results indicate that influenza viruses become resistant to serum inhibitors because their affinity for these inhibitors is reduced. To determine whether natural inhibitors play a role in viral evolution during interspecies transmission, we compared the receptor-binding properties of H3N8 avian and equine viruses, including two strains isolated during the 1989 to 1990 equine influenza outbreak, which was caused by an avian virus in China. Avian strains bound 4-O-acetylated sialic acid residues of equine α2-macroglobulin, whereas equine strains did not. The earliest avian-like isolate from a horse influenza outbreak bound to this sialic acid with an affinity similar to that of avian viruses; a later isolate, however, displayed binding properties more similar to those of classical equine strains. These data suggest that the neuraminidase-resistant sialylglycoconjugates present in horses exert selective pressure on the receptor-binding properties of avian virus HA after its introduction into this host.Influenza A viruses possess two envelope glycoproteins:hemagglutinin (HA) and neuraminidase (NA). HA binds to cell surface sialylglycoconjugates and mediates virus attachment to target cells (19, 30). NA cleaves the α-glycosidic linkage between sialic acid and an adjacent sugar residue, facilitating elution of virus progeny from infected cells and preventing self-aggregation of the virus (1, 13). Natural sialylglycoconjugates are structurally diverse (37, 40), and the preferential recognition of distinct sialyloligosaccharides by HA and NA correlates with the host species from which the viruses are isolated (reviewed in references 19, 30, and 38; see also references 4, 6, 7, 11, and 28).The receptor-binding activity of influenza viruses can be inhibited by certain molecules present in the sera and fluid secretions of animals (see references 14 and 21 for reviews). These inhibitors are classified as α, β, and γ types based on their thermal stability, virus-neutralizing activity, and sensitivity to inactivation by NA and periodate treatments. The β inhibitors are thermolabile mannose-binding lectins that interact with the oligosaccharide moieties on viral glycoproteins. They neutralize virus by steric hindrance of HA and by activation of the complement-dependent pathway (2, 3). By contrast, the α and γ inhibitors are heat-stable sialylated glycoproteins that mimic the structure of the cellular receptors of influenza viruses and competitively block the receptor-binding sites of HA. Influenza viruses are neutralized by γ inhibitors but not by α inhibitors, which are considered to be sensitive to viral NA. However, the distinction between α and γ inhibitors is strain dependent and rather arbitrary, as described by Gottschalk et al. (14). Although inhibitors in serum or other body fluids are believed to influence the selection of influenza virus receptor variants in natural hosts, no direct experimental support for this hypothesis has been presented.A potent γ inhibitor of H2 and H3 human influenza viruses, equine α2-macroglobulin (EM), contains a Neu4,5Ac22-6Gal moiety that is insensitive to viral NA and thus resists inactivation by this enzyme (16, 24, 31). Cultivation of human H3 influenza viruses in the presence of horse serum results in the selection of variants that have a decreased affinity for the Neu5Ac2-6Gal-specific receptors due to a single amino acid substitution (226L→Q) in their HA (32, 33). One of these mutants (X31/HS strain) does not bind the Neu4,5Ac2 (4-O-acetylated sialic acid) species (25). Therefore, there are at least two mechanisms by which a virus can become resistant to the horse serum inhibitor: a change in the recognition of the type of Sia-Gal linkage, and a change in the recognition of the 4-O-acetylated sialic acid. The relative contributions of these mechanisms to the resistant phenotype are yet to be defined.We have previously shown that horse, pig, and rabbit sera all contain distinct heat-resistant inhibitors of the H3N2 human influenza virus A/Los Angeles/2/87 (LA/87), because variants resistant to these sera possess unique mutations in their HA receptor-binding regions (34). The major inhibitor in pig serum was later identified as α2-macroglobulin that contains predominantly 2-6 linkage between sialic acid and galactose (35). Gimsa et al. (12) recently showed that pig serum-resistant human and swine strains exhibit decreased affinity for human erythrocytes that had been modified to contain terminal Neu5Ac2-6Gal residues. However, the nature of the rabbit serum inhibitor and the mechanisms of influenza virus resistance to each serum inhibitor remain unknown.To understand the molecular mechanisms by which influenza viruses become resistant to horse, pig, and rabbit serum inhibitors, we compared the receptor-binding characteristics of LA/87 and its serum-resistant variants and analyzed these data in relation to the known amino acid substitutions in the HA of the mutants. We then analyzed the receptor-binding properties of viruses isolated during an equine influenza outbreak that was caused by an avian virus, in order to evaluate the influence of natural inhibitors on the evolution of virus in a new host.  相似文献   
10.
The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1], [2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号