首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2017年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
The International Journal of Life Cycle Assessment - To support life cycle-based EU policies, the European Commission created the “European Platform on Life Cycle Assessment (EPLCA).”...  相似文献   
2.

Purpose

This paper explains in details the rationale behind the choice of the end-of-life allocation approach in the European Commission Product Environmental Footprint (PEF) and Organisational Environmental Footprint (OEF) methods. The end-of-life allocation formula in the PEF/OEF methods aims at enabling the assessment of all end-of-life scenarios possible, including recycling, reuse, incineration (with heat recovery) and disposal for both open- and closed-loop systems in a consistent and reproducible way. It presents how the formula builds on existing standards and how and why it deviates from them.

Methods

Various end-of-life allocation approaches and formulas, mainly taken not only from/based on existing environmental impact assessment methods and/or standards but also one original linearly degressive approach, were analysed against a predetermined set of criteria, reflecting the overall aim of the PEF/OEF methods. This set of criteria is physical realism, distribution of burdens and benefits in a product cascade system and applicability. Besides the qualitative analysis, the various formulas were implemented for several products and for different scenarios regarding recycled content and recyclability to check the robustness of the outcomes, exemplary expressed for the Global Warming Potential impact category.

Results and discussion

As reaching physical realism was impossible at both the product and overall product cascade system level by any of the end-of-life approaches analysed, one of both had to be prioritised. The paper explains in details why a product level approach was preferred in the context of the PEF/OEF methods. In consequence, allocation of the end-of-life processes which are related to more than one product in a product cascade system is needed and should be carefully considered as it has a major influence on the results and decision taking.

Conclusions

A formula taking into account the number of recycling cycles of a material was identified as preferred to reach physical realism and to allocate burdens and benefits of repeatedly recycling of a material over the different products in a product cascade system. However, this approach was not selected for the PEF/OEF methods as data on the number of recycling cycles was insufficiently available (for the time being) for all products on the market and hence fails the criterion of “applicability”. This explains why, instead, a formula based on the 50:50 approach—allocating shared end-of-life processes equally between the previous and subsequent product—was selected for the PEF/OEF methods.
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号