首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2017年   1篇
  2011年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The food-borne pathogen Bacillus cereus can acquire enhanced thermal resistance through multiple mechanisms. Two Bacillus cereus strains, ATCC 10987 and ATCC 14579, were used to quantify the effects of salt stress and physiological state on thermotolerance. Cultures were exposed to increasing concentrations of sodium chloride for 30 min, after which their thermotolerance was assessed at 50°C. Linear and nonlinear microbial survival models, which cover a wide range of known inactivation curvatures for vegetative cells, were fitted to the inactivation data and evaluated. Based on statistical indices and model characteristics, biphasic models with a shoulder were selected and used for quantification. Each model parameter reflected a survival characteristic, and both models were flexible, allowing a reduction of parameters when certain phenomena were not present. Both strains showed enhanced thermotolerance after preexposure to (non)lethal salt stress conditions in the exponential phase. The maximum adaptive stress response due to salt preexposure demonstrated for exponential-phase cells was comparable to the effect of physiological state on thermotolerance in both strains. However, the adaptive salt stress response was less pronounced for transition- and stationary-phase cells. The distinct tailing of strain ATCC 10987 was attributed to the presence of a subpopulation of spores. The existence of a stable heat-resistant subpopulation of vegetative cells could not be demonstrated for either of the strains. Quantification of the adaptive stress response might be instrumental in understanding adaptation mechanisms and will allow the food industry to develop more accurate and reliable stress-integrated predictive modeling to optimize minimal processing conditions.  相似文献   
2.
Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442, isolated from dry fermented sausages, produce bacteriocins antagonistic towards closely related species and pathogens, such as Listeria monocytogenes. The bacteriocins were inactivated by proteolytic enzymes and lipase but not by catalase and lysozyme. They were also heat stable, retaining activity after heating at 100 °C for 60 min. The bacteriocins were stable at pH values ranging from 2.0 to 8.0. Bacteriocin production was observed at low temperatures (10 and 4 °C) and in meat juice. The maximum bacteriocin activity was observed at the end of the exponential growth phase. The bacteriocins were produced in media with initial pH values ranging from 5.0 to 7.5, but not in media with a pH lower than 5.0 (weak bacteriocin activity of the antibacterial compound produced by Ln. mesenteroides L124 was observed at pH 4.5). Both bacteriocins exhibited strong bactericidal activity following cell/bacteriocin contact.  相似文献   
3.
Adrenal steroid profiling, including 17α-OH progesterone (17OHP), 11-deoxycortisol (S), Δ4-androstenedione (Δ4-A) and cortisol (F) in blood spots by tandem mass spectrometry, is used for newborn screening to detect congenital adrenal hyperplasia (CAH). Pre-analytical sample processing is critical for assay specificity and accuracy; however, it is laborious and time-consuming. This study describes the development and validation of a new Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) method for the simultaneous quantification of five steroids: 17OHP, S, Δ4-A, F and cortisone (E) in blood spots from newborns. Whole blood was eluted from a 5.00 mm dried blood spot by an aqueous solution containing the deuterium-labeled internal standards d8-17OHP and d4-cortisol. The steroids extracted from blood spot into aqueous solution were subsequently purified via Extelut mini NT1 column using diethylether. The extracts were evaporated and quantified using LC-MS/MS. The detection limit was 0.25 ng/mL for 17OHP and S, 0.4 ng/mL for Δ4-A and 0.5 ng/mL for F and E. The limit of quantification was 0.5 ng/mL for 17OHP, S and Δ4-A and 1 ng/mL for F and E. Precision for 17OHP, S, Δ4-A at concentrations of 0.5, 2, and 8 ng/mL (n=5) in fortified steroid free serum samples was 1.3-3.5% (intra-assay CV) and 7-14.8% (inter-assay CV). Precision for F and E at concentrations of 5 and 20 ng/mL was 1.5-4.8% (intra-assay, CV%) and 6-15% (inter-assay, CV%). Accuracy was calculated at concentrations of 0.5, 2, and 8 ng/mL for 17OHP, S and Δ4-A and ranged from -0.3 to 0.2%, while for F and E it ranged from -3.2 to 0.2%. Relative recoveries at concentration 2 ng/mL and 8 ng/mL for 17OHP, S, Δ4-A and at 5 ng/mL and 20 ng/mL for F and E ranged from 55% to 80%. Reference intervals were estimated for all steroids in newborns (on day 3). The steroid profile assay herein described is sensitive, specific and accurate and involves a simple pre-analytical sample manipulation; it is therefore suitable for routine analysis and provides data for samples within normal range as well as those with elevated levels. For the first time to our knowledge, cortisone levels are reported in dried blood spots from newborns.  相似文献   
4.
AIMS: To investigate the antagonistic activity of two lactic acid strains against the spoilage microflora in cooked cured meat products, vacuum or modified atmosphere packed at 4 degrees C and to determine the inhibitory capacity of their bacteriocins. METHODS AND RESULTS: Frankfurter-type sausages and sliced cooked cured pork shoulder were inoculated with Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442 or with their bacteriocins. The microbial, physico-chemical (pH, L- and D-lactate, acetate and ammonia) and colour changes were studied. Results under vacuum packaging showed that in the uninoculated samples of the pork product the spoilage microflora grew but in the inoculated ones the spoilage microorganisms (e.g. Brochothrix thermosphacta and enterococci) reduced during the storage. This observation was more pronounced in the samples with the addition of bacteriocins. In the frankfurter-type sausages the spoilage microflora did not grow in the uninoculated and inoculated samples. In the modified atmosphere enriched in CO2 the population of spoilage microflora remained at low levels in both products, indicating that CO2 has an effect on the spoilage microorganisms' growth. In the pork product the concentrations of acetate and d-lactate increased while L-lactate decreased, but in the frankfurter-type sausages increase of acetate and D-lactate was not observed. CONCLUSIONS: Lactic acid strains had an effect on the spoilage microflora growth but did not affect, negatively, the organoleptic properties of the products. These strains may be used as biopreservative cultures or their bacteriocins could be an important contribution to microbiological quality of meat products. SIGNIFICANCE AND IMPACT OF STUDY: Establishment of biopreservation as a method for extension of shelf life of meat products.  相似文献   
5.
6.
The aim of the present study was to assess the microecosystem development and the dynamics of the lactic acid bacteria population during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine at 20 and 30?°C. In both temperatures, lactic acid bacteria prevailed the fermentation; as a result, the pH value was reduced to ca. 3.6 and total titrable acidity increased to ca. 0.4% lactic acid. Enterococci population increased and formed a secondary microbiota while pseudomonads, Enterobacteriaceae and yeasts/molds populations were below enumeration limit already before the middle of fermentation. Pediococcus pentosaceus dominated during the first days, followed by Lactobacillus plantarum that prevailed the fermentation until the end. Lactobacillus brevis was also detected during the final days of fermentation. A succession at sub-species level was revealed by the combination of RAPD-PCR and rep-PCR analyses. Glucose and fructose were the main carbohydrates detected in brine and were metabolized into lactic acid, acetic acid and ethanol.  相似文献   
7.
The food-borne pathogen Bacillus cereus can acquire enhanced thermal resistance through multiple mechanisms. Two Bacillus cereus strains, ATCC 10987 and ATCC 14579, were used to quantify the effects of salt stress and physiological state on thermotolerance. Cultures were exposed to increasing concentrations of sodium chloride for 30 min, after which their thermotolerance was assessed at 50 degrees C. Linear and nonlinear microbial survival models, which cover a wide range of known inactivation curvatures for vegetative cells, were fitted to the inactivation data and evaluated. Based on statistical indices and model characteristics, biphasic models with a shoulder were selected and used for quantification. Each model parameter reflected a survival characteristic, and both models were flexible, allowing a reduction of parameters when certain phenomena were not present. Both strains showed enhanced thermotolerance after preexposure to (non)lethal salt stress conditions in the exponential phase. The maximum adaptive stress response due to salt preexposure demonstrated for exponential-phase cells was comparable to the effect of physiological state on thermotolerance in both strains. However, the adaptive salt stress response was less pronounced for transition- and stationary-phase cells. The distinct tailing of strain ATCC 10987 was attributed to the presence of a subpopulation of spores. The existence of a stable heat-resistant subpopulation of vegetative cells could not be demonstrated for either of the strains. Quantification of the adaptive stress response might be instrumental in understanding adaptation mechanisms and will allow the food industry to develop more accurate and reliable stress-integrated predictive modeling to optimize minimal processing conditions.  相似文献   
8.
The aim of this study was to investigate the effect of complex nutrients on microbial growth and bacteriocin production, in order to improve bacteriocin synthesis during the growth cycle of Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. The fermentations were conducted at the optimum pH and temperature for bacteriocin production (pH 5.5+/-0.1 and temperature 25+/-0.1 degrees C). Because of their association with the final biomass, conditions favouring the increase of the produced biomass resulted in the increase of bacteriocin activity in the growth medium. Since the produced final biomass and the final concentration of the bacteriocins were associated with the amount of the carbon (glucose) and nitrogen source, better growth of the lactic acid bacterial strains favoured the increase of the specific bacteriocin production. Additionally, the bacteriocin production was influenced by carbon/nitrogen ratio.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号