首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   598篇
  免费   37篇
  635篇
  2021年   7篇
  2018年   5篇
  2016年   6篇
  2015年   8篇
  2014年   15篇
  2013年   14篇
  2012年   22篇
  2011年   12篇
  2010年   14篇
  2009年   12篇
  2008年   16篇
  2007年   11篇
  2006年   23篇
  2005年   12篇
  2004年   17篇
  2003年   15篇
  2002年   12篇
  2001年   19篇
  2000年   9篇
  1999年   8篇
  1998年   15篇
  1997年   4篇
  1994年   8篇
  1992年   10篇
  1991年   22篇
  1990年   14篇
  1989年   16篇
  1988年   7篇
  1987年   9篇
  1986年   10篇
  1985年   18篇
  1984年   15篇
  1983年   9篇
  1982年   15篇
  1981年   7篇
  1980年   7篇
  1979年   22篇
  1978年   10篇
  1977年   8篇
  1976年   7篇
  1975年   9篇
  1974年   12篇
  1973年   10篇
  1972年   11篇
  1971年   12篇
  1970年   7篇
  1969年   15篇
  1967年   5篇
  1966年   9篇
  1965年   6篇
排序方式: 共有635条查询结果,搜索用时 15 毫秒
1.
2.
This work aims at study of thermal degradation kinetics and mechanism of pentose- and hexose-based carbohydrate polymers isolated from Plantago ovata (PO), Salvia aegyptiaca (SA) and Ocimum basilicum (OB). The analysis was performed by isoconversional method. The materials exhibited mainly two-stage degradation. The weight loss at ambient-115°C characterized by low activation energy corresponds to loss of moisture. The kinetic triplets consisting of E, A and g(α) model of the materials were determined. The major degradation stage represents a loss of high boiling volatile components. This stage is exothermic in nature. Above 340°C complete degradation takes place leaving a residue of 10-15%. The master plots of g(α) function clearly differentiated the degradation mechanism of hexose-based OB and SA polymers and pentose-based PO polymer. The pentose-based carbohydrate polymer showed D(4) type and the hexose-based polymers showed A(4) type degradation mechanism.  相似文献   
3.
    
We aimed to assess comprehensively the prevalence of perinatal risks experienced by a potentially high-risk yet understudied population of children domestically adopted in the United States. Data are from participant report and medical records from mothers (n = 580) who completed a domestic adoption placement with nonrelatives at or near birth (Mean placement age = 7 days). We describe a comprehensive measure of perinatal risks, including divergences from previous assessment tools and the incorporation of multiple reporters, and report the prevalence of various types of perinatal risks. The prevalence of each specific risk factor was generally low, although several risks were more prevalent in this sample than estimates from nationally representative publicly available data. Nearly the entire sample (99%) experienced some type of risk exposure. Birth mothers who placed their children for adoption domestically in the US experience higher levels of perinatal risks than the national average, but not for all specific types of risk. Thus, the developmental trajectories of children adopted domestically may systematically differ from the general population to the extent that these specific perinatal risks impact development.  相似文献   
4.
Lactate oxidase forms tight complexes with a variety of mono- and dicarboxylic acids. Most of these undergo facile photoreactions involving decarboxylation of the carboxylic acid and formation of covalent adducts at position N(5) of the flavin, characterized by absorption maxima from 325 to 365 nm and fluorescence emission in the range 440 to 490 nm. The properties of the adducts are strongly dependent on the nature of the substituent. Enzyme-bound N(5)-acyl adducts and N(5)-CH2-R derivatives are stable in the dark. Glycollyl- and alpha-lactyl adducts, however, decay to oxidized enzyme with half-lives in the order of minutes. Upon denaturation of the enzyme, the N(5)-alkyl adducts decay rapidly or are oxidized by oxygen. Reduced lactate oxidase is also photoalkylated in the presence of halogenated carboxylic acids. Bromoacetate yields an N(5)-carboxymethyl adduct; with beta-bromopropionate, a C(4a)-beta-propionyl derivate is formed. The N(5) adduct is identical with that from the photochemical reaction of oxidized enzyme and malonic acid. When the native coenzyme FMN is substituted by 2-S-FMN, qualitatively the same photoproducts are formed. The adducts obtained with the 2-S-FMN enzyme show the expected bathochromic shifts in absorption spectra. The results indicate that the photoreactivity of the enzyme is restricted to the positions C(4a) and N(5) of the flavin.  相似文献   
5.
6.
The mechanism by which McAb of the IgM isotype causes prolonged survival of leukemic rats was investigated. The participation of endogenous C in the suppression of IgM-sensitized leukemia cells was demonstrated by the observations that a) suppression was abrogated in CVF-treated rats, and b) the CVF effect was partially reversed if C3b was provided on the surface of IgM-sensitized leukemia cells.  相似文献   
7.
8.
Phenol hydroxylase, an FAD-containing monooxygenase, catalyzes the conversion of substituted phenols to the corresponding catechol. Use of metapyrocatechase, capable of dioxygenation of several catechols to give highly absorbing products, permitted determination of the time course of product release from phenol hydroxylase. Product dissociated prior to complete reoxidation of the enzyme, most likely concomitant with formation of the 4a-hydroxyflavin species (intermediate III). Deuterated phenol and thiophenol exhibited no kinetic isotope effect during the oxidative half-reaction. Isotope effects of 1.7 to 3.7 were found with resorcinol for the conversion of the second intermediate to intermediate III. These effects limited the possible models for phenol hydroxylation. An attempt was made to distinguish whether the spectrum of intermediate II is due entirely to that of the flavin moiety of phenol hydroxylase or whether some radical intermediate form involved in the formation of catechol makes a significant visible contribution. Reduced native and 6-hydroxy-FAD phenol hydroxylase were reacted with oxygen and resorcinol in order to provide evidence for the identity of intermediate II.  相似文献   
9.
Xu D  Enroth C  Lindqvist Y  Ballou DP  Massey V 《Biochemistry》2002,41(46):13627-13636
An active site residue in phenol hydroxylase (PHHY), Pro364, was mutated to serine to investigate its role in enzymatic catalysis. In the presence of phenol, the reaction between the reduced flavin of P364S and oxygen is very fast, but only 13% of the flavin is utilized to hydroxylate the substrate, compared to nearly 100% for the wild-type enzyme. The oxidative half-reaction of PHHY using m-cresol as a substrate is similarly affected by the mutation. Pro364 was suggested to be important in stabilizing the transition state of the oxygen transfer step by forming a hydrogen bond between its carbonyl oxygen and the C4a-hydroperoxyflavin [Ridder, L., Mullholland, A. J., Rietjens, I. M. C. M., and Vervoort, J. (2000) J. Am. Chem. Soc. 122, 8728-8738]. The P364S mutation may weaken this interaction by increasing the flexibility of the peptide chain; hence, the transition state would be destabilized to result in a decreased level of hydroxylation of phenol. However, when the oxidative half-reaction was studied using resorcinol as a substrate, the P364S mutant form was not significantly different from the wild-type enzyme. The rate constants for all the reaction steps as well as the hydroxylation efficiency (coupling between NADPH oxidation and resorcinol consumption) are comparable to those of the wild-type enzyme. It is suggested that the function of Pro364 in catalysis, stabilization of the transition state, is not as important in the reaction with resorcinol, possibly because the position of hydroxylation is different with resorcinol than with phenol and m-cresol.  相似文献   
10.
We report Hammett correlations, using 8-substituted flavins, to clarify the mechanism of hydroxylation by p-hydroxybenzoate hydroxylase (PHBH). The 8-position of the FAD isoalloxazine ring was chosen for modifications, because in PHBH it has minimal interactions with the protein, and it is accessible to solvent and away from the site of hydroxylation. Although two intermediates, a flavin-C4a-hydroperoxide and a flavin-C4a-hydroxide, are known to participate in hydroxylation, the mechanism of oxygen transfer remains controversial. Mechanisms as diverse as electrophilic aromatic substitution, diradical formation, and isoalloxazine ring opening have been proposed. In the studies reported here, it was possible to monitor spectrally each of the individual steps involved in hydroxylation, because the FAD cofactor acts as a reporter group. Thus, with PHBH, substituted separately with nine derivatives of FAD altered in the 8-position, quantitative structure-reactivity relationships (QSAR) have been applied to probe the mechanisms of formation of the flavin-C4a-hydroperoxide, the conversion to the flavin-C4a-hydroxide with concomitant oxygen transfer to the substrate, and the dehydration of the flavin-C4a-hydroxide to form oxidized FAD. The individual chemical steps in the mechanism of PHBH were not altered when using any of the modified flavins, and normal products were obtained; however, the rates of individual steps were affected, and depended on the electronic properties of the 8-substituent. Increased hydroxylation rates were observed when a more electrophilic flavin-C4a-hydroperoxide (i.e., with an electron-withdrawing substituent at the 8-position) is bound to PHBH. On the basis of QSAR analysis, we conclude that the mechanism of the hydroxylation step is best described by electrophilic aromatic substitution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号