首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   9篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   9篇
  2015年   6篇
  2014年   5篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   3篇
  1986年   1篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
1.
Mehrabi  Fatemeh  Shamspur  Tayebeh  Sheibani  Hassan  Mostafavi  Ali  Mohamadi  Maryam  Hakimi  Hamid  Bahramabadi  Reza  Salari  Elham 《Biometals》2021,34(6):1237-1246
BioMetals - Trimethoprim and sulfamethoxazole are prescribed for a broad spectrum of bacteria. However, the use of these medicines is restricted due to the risk of microbial resistance in the body....  相似文献   
2.
Endometriosis is a chronic gynecological inflammatory disorder in which immune system dysregulation is thought to play a role in its initiation and progression. Due to altered sex steroid receptor concentrations and other signaling defects, eutopic endometriotic tissues have an attenuated response to progesterone. This progesterone-resistance contributes to lesion survival, proliferation, pain, and infertility. The current agency-approved hormonal therapies, including synthetic progestins, GnRH agonists, and danazol are often of limited efficacy and counterproductive to fertility and cause systemic side effects due to suppression of endogenous steroid hormone levels. In the current study, we examined the effects of curcumin (CUR, diferuloylmethane), which has long been used as an anti-inflammatory folk medicine in Asian countries for this condition. The basal levels of proinflammatory and proangiogenic chemokines and cytokines expression were higher in primary cultures of stromal cells derived from eutopic endometrium of endometriosis (EESC) subjects compared with normal endometrial stromal cells (NESC). The treatment of EESC and NESC with CUR significantly and dose-dependently reduced chemokine and cytokine secretion over the time course. Notably, CUR treatment significantly decreased phosphorylation of the IKKα/β, NF-κB, STAT3, and JNK signaling pathways under these experimental conditions. Taken together, our findings suggest that CUR has therapeutic potential to abrogate aberrant activation of chemokines and cytokines, and IKKα/β, NF-κB, STAT3, and JNK signaling pathways to reduce inflammation associated with endometriosis.  相似文献   
3.
A series of new 2-substituted-5-[2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles has been synthesized and screened for their anticonvulsant activities. Compound 3 shows considerable anticonvulsant activity both in PTZ and MES models. It seems that this effect is mediated by benzodiazepine receptors and other unknown mechanism, respectively.  相似文献   
4.
5.
Twenty‐nine synthetic hexaploid wheats (SHWs) were evaluated for resistance to five isolates of Zymoseptoria tritici, a devastating wheat pathogen worldwide. The five Z. tritici isolates varied in their virulence spectra towards wheat genotypes, indicating that they have distinct set of avirulence genes. New isolate‐specific resistances were identified that could be used in wheat breeding programmes. Comparing with the previous studies, the number of specific resistances identified in this study is considerable. Among 150 interactions, 78 isolate‐specific resistances were identified. Interestingly, 21 wheat genotypes showed specific responses to one or more isolates tested. Of these, 12 genotypes were highly resistant to all isolates, indicating that they possess known or novel effective resistance genes. The Stb15 and Stb16/Stb17 are effective resistance genes towards isolates used in this study, indicating that the conferred resistance in these genotypes is due to the presence of either of these genes in combination or individually. Alternatively, they may carry novel broad‐spectrum resistance gene(s) that their identification is of interest. Our data suggest that the presence of complete resistance to various Z. tritici isolates in SHWs justifies the need for more in‐depth research to characterize the likely novel genes.  相似文献   
6.
Among expressed sequence tag libraries of Mycosphaerella graminicola isolate IPO323, we identified a full-length cDNA clone with high homology to the mitogen-activated protein (MAP) kinase Slt2 in Saccharomyces cerevisiae. This MAP kinase consists of a 1242-bp open reading frame, and encodes a 414-amino-acid protein. We designated this homolog MgSlt2, generated MgSlt2 knockout strains in M. graminicola isolate IPO323, and found several altered phenotypes in vitro as well as in planta. In yeast glucose broth, MgSlt2 disruptants showed a defective polarized growth in the tip cells upon aging, causing substantial local enlargements culminating in large swollen cells containing two to four nuclei. The MgSlt2 disruptants showed a significantly increased sensitivity to several fungicides, including miconazole (2x), bifonazole (>4x), imazalil (5x), and cyproconazole (10x), and were hypersensitive to glucanase. Unlike the wild type, MgSlt2 disruptants did not produce aerial mycelia and did not melanize on potato dextrose agar. Although cytological analysis in planta showed normal penetration of wheat stomata by the germ tubes of the MgSlt2 disruptants, subsequently formed hyphal filaments frequently were unable to branch out and establish invasive growth resulting in highly reduced virulence, and prevented pycnidia formation. Therefore, we conclude that MgSlt2 is a new pathogenicity factor in M. graminicola.  相似文献   
7.
Silica sulfuric acid catalyzes efficiently the reaction of sulfonamides with both carboxylic acid anhydrides and chlorides under solvent-free and heterogeneous conditions. All the reactions were done at room temperature and the N-acylsulfonamides were obtained with high yields and purity via an easy work-up procedure. This method is attractive and is in a close agreement with green chemistry. These compounds were also investigated for antibacterial activity, including Gram-positive cocci and Gram-negative bacilli, and carbonic anhydrase II inhibitory activity.  相似文献   
8.
Fusarium head blight caused by Fusarium graminearum is an important disease of wheat and barley. In a previous study, we identified several mutants with reduced virulence by insertional mutagenesis. A transducin beta-like gene named FTL1 was disrupted in one of these nonpathogenic mutants. FTL1 is homologous to Saccharomyces cerevisiae SIF2, which is a component of the Set3 complex involved in late stages of ascospore formation. The Δftl1 mutant was significantly reduced in conidiation and failed to cause typical disease symptoms. It failed to colonize the vascular tissues of rachis or cause necrosis on the rachis of inoculated wheat heads. The Δftl1 mutant also was defective in spreading from infected anthers to ovaries and more sensitive than the wild type to plant defensins MsDef1 and osmotin. However, the activation of two mitogen-activated protein kinases, Mgv1 and Gpmk1, production of deoxynivalenol, and expression of genes known to be important for plant infection in F. graminearum were not affected, indicating that the defect of the Δftl1 mutant in plant infection is unrelated to known virulence factors in this pathogen and may involve novel mechanisms. The Δftl1 deletion mutant was significantly reduced in histone deacetylation, and many members of the yeast Set3 complex are conserved in F. graminearum. FTL1 appears to be a component of this well-conserved protein complex that plays a critical role in the penetration and colonization of wheat tissues.The filamentous ascomycete Fusarium graminearum (teleomorph Gibberella zeae) is the main causal agent of Fusarium head blight (FHB), or scab, which is an important disease on wheat and barley throughout the world (18). It also causes stalk and ear rots of maize and infects other small grains. In addition to causing yield losses, this pathogen often contaminates infested grains with trichothecene and estrogenic mycotoxins, such as deoxynivalenol (DON) and zearalenone. Unfortunately, complete resistance to F. graminearum is lacking in wheat, and fungicide application is not cost-effective for FHB control in wheat and barley.F. graminearum overwinters in infected plant debris and produces ascospores in the spring. Ascospores are forcibly discharged from mature perithecia (52) and function as the primary inoculum for FHB. The multicellular conidia or macroconidia are important for spreading the disease in the field and colonizing plant vegetative tissues. Wheat spikes are most susceptible to FHB at anthesis (34a). Although F. graminearum can colonize glumes, anthers are the main site of primary infection on flowering wheat heads (3, 38). Earlier studies indicated that wheat anther extracts stimulate F. graminearum virulence on wheat. Choline and glycine betaine were identified as two major components in anthers that stimulate fungal growth and predispose wheat to F. graminearum infection (50, 51). Under conducive conditions, the fungus can spread from the infected floret along the rachis and cause severe damage. The production of DON, the first virulence factor identified in F. graminearum (11, 42), is not necessary for the initial infection but is important for the spread of FHB on infected wheat heads (2).In the past few years, genetic and genomic studies of F. graminearum have advanced significantly. The genome of F. graminearum has been sequenced (10) and a whole-genome microarray of this haploid homothallic fungus is commercially available (21). A number of pathogenicity or virulence factors have been identified by insertional mutagenesis or targeted gene deletion approaches. Two mitogen-activated protein (MAP) kinase genes, MGV1 and GPMK1, are essential for pathogenicity in F. graminearum (23, 24). Genes that are important for full virulence in F. graminearum on wheat include FGL1 (54), GzCPS1 (31), FBP1 (22), FSR1 (48), SID1 (19), NPS6 (37), RAS2 (5), GzGPA2 and GzGPB1 (56), and HMR1 (47). These virulence-associated genes encode proteins with various biochemical activities, such as lipase, nonribosomal peptide synthase, Ras protein, and 3-hydroxy 3-methylglutaryl coenzyme A reductase. Several genes involved in the primary metabolism, such as the CBL1, RSY1, GzHIS7, ADE5, and ARG2 genes (29, 44, 46) that are required for methionine, histidine, and arginine syntheses, also have been implicated in plant infection in F. graminearum. Overall, molecular mechanisms underlying F. graminearum pathogenesis appear to be complex and remain to be fully understood.In a previous study, we identified 11 restriction enzyme-mediated integration (REMI) mutants that are defective in plant infection (46). In one of these mutants, the transforming vector was inserted in a predicted gene named FTL1 (for Fusarium transducin beta-like gene 1). FTL1 is homologous to the mammalian TBL1 or TBLR1 genes (40, 55) and the Saccharomyces cerevisiae SIF2 gene (8). The products of these genes are components of protein complexes involving histone deacetylases (HDACs). In mammalian cells, TBL1 and TBLR1 are parts of the N-CoR/SMRT/HDAC complexes (40). In yeast, SIF2 is a part of the Set3 complex regulating ascospore formation. In F. graminearum, the Δftl1 gene replacement mutant was significantly reduced in conidiation and failed to cause typical head blight symptoms on flowering wheat heads. It failed to colonize vascular tissues or cause necrosis on the rachis of inoculated wheat heads. The Δftl1 mutant also was defective in spreading from infected anthers to ovaries and was more sensitive than the wild type to plant defensins MsDef1 and osmotin. Although it was normal in the production of deoxynivalenol and the expression of known virulence factors, the Δftl1 mutant was significantly reduced in HDAC activities. FTL1 appears to be a component of this well-conserved HDAC complex that plays a critical role in the penetration and colonization of wheat tissues.  相似文献   
9.
Cretaceous carbonate successions of the Bangestan Group, such as the Sarvak and Ilam formations, are among the most prolific hydrocarbon reserves of the Middle East. However, relatively little is known about their detailed palaeontology and biostratigraphy. Moreover, due to lithological similarity of these carbonate formations recognition of their boundaries in subsurface studies is problematic. To investigate these units, biostratigraphic analyses were carried out on nearly 1100 m of cores, including core plug samples and thin sections prepared from five giant and supergiant oilfields in the northern and southern Dezful Embayment, SW Iran. Accordingly, 59 species of foraminifera (assigned to 43 genera) as well as 11 species of non-foraminifera (10 genera) were recognized. As a result, three biozones were identified, which in stratigraphic order are: Nezzazata-Alveolinids Assemblage Zone; Moncharmontia apenninica-Nezzazatinella-Dicyclina Assemblage Zone; and Rotalia skourensis-algae Assemblage Zone. These are compared with the Wynd's (1965) biozonation scheme, previously introduced in the Zagros area, and a revised scheme is presented. Accordingly, a Cenomanian–Turonian age and a Coniacian–Campanian age are envisaged for the Upper Sarvak and Ilam formations, respectively. In our new biostratigraphic scheme, the Sarvak–Ilam formations boundary is considered to be located above the Moncharmontia apenninica-Nezzazatinella-Dicyclina Assemblage Zone (equivalent of Valvulammina-Dicyclina Assemblage Zone of Wynd, 1965), that is Turonian in age. This zone is bounded by two palaeoexposure surfaces, which correspond approximately to the C–T boundary transitional interval and a post-Turonian, which can be possibly assigned to the Coniacian. Significant sedimentological features of these disconformities include bauxitic–lateritic horizons, karstified profiles and solution-collapsed breccias. Geochemical signatures of these meteorically altered surfaces are also considered to calibrate biofacies and biozones. Finally, we compared our new biozonation scheme with other studies in neighboring areas of SW Iran and the Middle East.  相似文献   
10.
During 2015–2016, wooden and herbaceous plants growing in parks, boulevards, fields, gardens and forests in Khuzestan province, southwestern Iran, were visually inspected for symptoms resembling phytoplasma. Fifty‐one symptomatic samples from nine different species and one symptomless sample from each plant were collected. Leaf midribs, petioles and the parts of stem cambium were separated and freeze‐dried. Total DNA was extracted using CTAB‐based method and tested for phytoplasma using a nested PCR assay. The expected size amplicons of 16S rDNA were sequenced and compared to those of reference phytoplasmas by BLASTn search and phylogenetic analysis. The consensus 16S rDNA sequence of the detected phytoplasma in narrow cattail related to reference phytoplasma group 16SrVI, “Candidatus Phytoplasma trifolii” while in the other plants were related to reference phytoplasma subgroup 16SrII–D, “Candidatus Phytoplasma aurantifolia.” All isolates showed 98%–99% sequence identity to members of their reference groups. To our knowledge, this is the first report of “Candidatus Phytoplasma aurantifolia”‐related strains infecting the plants of Acacia salicina, Alternanthera ficoidea, Melaleuca citrine, Citrus aurantium throughout the world and Celosia christata in Iran. Furthermore, this study is the first to report the association of a “Candidatus Phytoplasma trifolii”‐related strain with Typha angustifolia worldwide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号