首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2002年   2篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
The reaction of [Ru(CO)2Cl2]n with bis(2-pyridylmethyl)amine (bpma) in refluxing ethanol followed by anion exchange yields two products: cis,fac-[Ru(bpma)(CO)2Cl]PF6 (1a, 71%) and trans,fac-[Ru(bpma)(CO)2Cl]PF6 (1b, 29%). Reaction of 1a with AgBF4 in acetone, followed by acetonitrile and then anion exchange gave cis,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2a). In the same way, 1b afforded trans,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2b). Reaction of depolymerized [Ru(CO)2Cl2]n with bpma in ethanol at room temperature afforded cis,cis-[Ru(η2-bpma)(CO)2Cl2] (3). In refluxing ethanol, 3 was converted to cis,fac-[Ru(bpma)(CO)2Cl]Cl (1a-Cl). Heating 3 in chlorobenzene afforded 1b-Cl, exclusively; heating 3 in ethylene glycol gave mainly 1a-Cl. Heating 1a-Cl in ethanol resulted in no isomerization, but heating in chlorobenzene gave a mixture of 3 and 1b-Cl. Anion exchange for PF6 with 1a-Cl and 1b-Cl afforded 1a and 1b, respectively, whereas anion exchange for BPh4 afforded 1a-BPh4. Compounds 1a, 1b, 2a and 3 have been structurally characterized.  相似文献   
2.
The sulfur-alkylation of the nickel (1) and zinc (2) complexes of the dithiolate N2S2 ligand N,N′-bis-2-methyl-mercaptopropyl-N,N′-dimethylethylenediamine, H2(bmmp-dmed), have been investigated. Reactions with iodomethane yield [(Me-bmmp-dmed)Ni]PF6 (3), [(Me2-bmmp-dmed)NiI2] (4), and [(Me2-bmmp-dmed)ZnI]2[ZnI4] (5). Addition of iodoacetamide yields [(AA2-bmmp-dmed)Ni]I2 (6) and [(AA2-bmmp-dmed)Zn]I2 (7). Each of the metal-thioether products (3-7) have been characterized spectroscopically and by X-ray crystallography. Structural data is compared with that of the previously reported thiolato precursors 1 and 2. Sulfur-alkylation of 1 results in small relative changes in the nickel-sulfur bond distance, whereas for 2, the zinc-sulfur bond distance increases significantly, but is not cleaved. The difference between nickel and zinc is attributed to the release of a π*-bonding interaction between the metal and sulfur upon alkylation that compensates for the decreased σ-donor ability of the thioether in the case of nickel, but not for zinc.  相似文献   
3.
4.
Permethylated C-sugars affect the stability and solubility of their carbohydrate precursors and may represent an important group of bioconjugates. When properly functionalized, these unitscan be appended to the N- and C-termini or to the side chains ofpeptides or other therapeutic candidates. In this report, we describe the synthesis of an amine-functionalized alkylated mannose derivative and confirm the configuration by determiningthe X-ray crystal structure of its nitrile precursor. An acid functionalized counterpart, when attached to the N-terminus of aNR box peptide analog, improved binding to estrogen receptor (ER) but not to ER.  相似文献   
5.
Summary Permethylated C-sugars affect the stability and solubility of their carbohydrate precursors and may represent an important group of bioconjugates. When properly functionalized, these units can be appended to the N- and C-termini or to the side chains of peptides or other therapeutic candidates. In this report, we describe the synthesis of an amine-functionalized alkylated mannose derivative and confirm the configuration by determining the X-ray crystal structure of its nitrile precursor. An acid functionalized counterpart, when attached to the N-terminus of a NR box peptide analog, improved binding to estrogen receptor β (ERβ) but not to ERα.  相似文献   
6.
Alkylation of bis(2-aminoethanethiolato)nickel(II) (1) with alkylating agents containing pendant donor groups has been investigated. Reaction with 2-bromoethylamine is strictly sulfur-centered yielding (2-[(2-aminoethyl)thio]ethaneamine)nickel(II)bromide, [(DAES)2Ni]Br2 (2), which was isolated as a lilac solid. Addition of chloroacetamide yields the sulfur- and nitrogen-alkylated product (2-[(2-aminoethyl)thio]acetamide)nickel(II)chloride, (AETA)NiCl2 (3a), as a green solid. Recrystallization from water/acetone yields 3a as single crystals along with single crystals of [(AETA)NiCl(OH2)]Cl (3b). The strictly S-alkylated product (2-[(2-amino-2-oxoethyl)thio]acetamide)nickel(II)iodide, [(AOTA)2Ni]I2 (4), is obtained upon reaction of 1 with iodoacetamide. A pathway is proposed consistent with the observed leaving group effect on the site of alkylation. The X-ray structures of 3a, 3b, and 4 are reported and the hydrogen-bonding network is described.  相似文献   
7.
The oxygen sensitivity of two related iron(III) dithiolate complexes of the ligand [4,7-bis-(2′-methyl-2′-mercatopropyl)-1-thia-4,7-diazacyclononane], (bmmp-TASN)FeCN (1) and (bmmp-TASN)FeCl (2), has been examined. Oxygen exposure of the low-spin complex 1 yields the disulfonate complex (bmmp-O6-TASN)FeCN (3) as an olive-green solid with characteristic peaks in the IR spectrum at 1262, 1221, 1111, 1021, 947, 800, and 477 cm−1. The corresponding nickel dithiolate, (bmmp-TASN)Ni (4), yields the related disulfonato derivative, (bmmp-O6-TASN)Ni (5) upon addition of H2O2 (IR bands at 1258, 1143, 1106, 1012, 800, and 694 cm−1. Oxygen exposure of the high-spin complex 2 results in disulfide formation and decomplexation of the metal with subsequent iron-oxo cluster formation. Complexes 1 and 2 were examined using density functional theory calculations. A natural bond order/natural localized molecular orbital covalency analysis reveals that the low-spin complex 1 contains Fe–Sthiolate bonds with calculated covalencies of 75 and 86%, while the high-spin complex 2 contains Fe–Sthiolate bonds with calculated covalencies of 11 and 40%. The results indicate the degree of covalency of the Fe–S bonds plays a major role in determining the reaction pathway associated with oxygen exposure of iron thiolates. The X-ray structures of 1, 4, and 5 are reported. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号