全文获取类型
收费全文 | 4885篇 |
免费 | 222篇 |
国内免费 | 2篇 |
专业分类
5109篇 |
出版年
2022年 | 26篇 |
2021年 | 54篇 |
2020年 | 33篇 |
2019年 | 52篇 |
2018年 | 55篇 |
2017年 | 62篇 |
2016年 | 85篇 |
2015年 | 142篇 |
2014年 | 151篇 |
2013年 | 276篇 |
2012年 | 287篇 |
2011年 | 254篇 |
2010年 | 182篇 |
2009年 | 195篇 |
2008年 | 272篇 |
2007年 | 289篇 |
2006年 | 261篇 |
2005年 | 260篇 |
2004年 | 262篇 |
2003年 | 234篇 |
2002年 | 219篇 |
2001年 | 107篇 |
2000年 | 101篇 |
1999年 | 106篇 |
1998年 | 54篇 |
1997年 | 62篇 |
1996年 | 48篇 |
1995年 | 47篇 |
1994年 | 41篇 |
1993年 | 53篇 |
1992年 | 93篇 |
1991年 | 91篇 |
1990年 | 85篇 |
1989年 | 60篇 |
1988年 | 70篇 |
1987年 | 43篇 |
1986年 | 47篇 |
1985年 | 40篇 |
1984年 | 37篇 |
1983年 | 34篇 |
1982年 | 35篇 |
1981年 | 22篇 |
1980年 | 12篇 |
1979年 | 24篇 |
1978年 | 14篇 |
1976年 | 13篇 |
1975年 | 14篇 |
1974年 | 28篇 |
1973年 | 10篇 |
1968年 | 9篇 |
排序方式: 共有5109条查询结果,搜索用时 15 毫秒
1.
Masaki Tateno 《Ecological Research》1988,3(3):267-277
Air-dried fresh and dead specimens ofPolygonum cuspidatum were incubated for 250 days in the laboratory, and the growth and turnover of microbial biomass-C in the organic matter were
studied. The biomass-C in the fresh leaf and fresh stem attained maximum levels on day 14 and day 7, respectively, and then
settled down to stable levels. In the dead leaf and dead stem, increase in biomass-C ceased by day 4 and the biomass-C levels
did not change thereafter. The turnover time of the biomass-C was estimated from the amount of biomass-C and the release rate
of CO2-C. The turnover was rapid in the early period of incubation. Then the turnover time became longer and after incubation for
70 days the values approached those in natural soils (longer than 16 days). During the incubation period, nitrogen was not
mineralized in any organic matter. In the dead leaf and dead stem, asymbiotic nitrogen fixation activity increased after incubation
for about 40 days and disappeared by the end of the incubation period, whereas nitrogen fixation was hardly detected in the
fresh leaf and fresh stem. 相似文献
2.
Summary Changes in the intracellular distribution of microtubules and microfilaments during amoeba-to-flagellate and flagellate-to-amoeba transformations inPhysarum polycephalum were examined by fluorescence microscopy using anti-tubulin antibody and NBD-phallacidin, respectively. Amoebae contained an extensive microtubular cytoskeleton, which was converted to a flagellar cone structure during transformation to flagellates in liquid medium. When flagellates reverted back to amoebae, this conical structure disintegrated prior to flagella resorption. Amoebae showed some microfilament-enriched domains along the periphery, from which numerous filamentous extrusions, probably pseudopods and filopods, emanated. Flagellates contained a ridge, a sheet-like structure, along their dorsal axis, especially in the earlier stages of flagellation. Another microfilament-enriched thick filamentous structure ran along the dorsal axis, starting from the anterior tip of the cell. This structure apparently coincided spatially with one of the bundles of microtubules. During the reversion to amoebae, other localized microfilaments were transiently observed at the posterior end. A model of cytoskeletal changes in the transformations between these two cell types was proposed. 相似文献
3.
Daisuke Harada Shinsaku Naito Yoshiyuki Kawauchi Keiko Ishikawa Osamu Koshitani Isao Hiraoka Masaki Otagiri 《Analytical biochemistry》2001,290(2)
A high-performance liquid chromatographic assay was developed for the quantitative determination of the sulfur-containing amino acids N-acetyl-
-cysteine (NAC) and
-cysteine (Cys) in rat plasma. The thiols were separated by reverse-phase ion-pair chromatography, and the column eluent was continuously mixed with an iodoplatinate-containing solution. The substitution of sulfur of the thiol compound with iodide was quantitatively determined by measuring changes in the absorption at 500 nm. The low-molecular-weight disulfides and mixed disulfide conjugates of thiols with proteins were entirely reduced to the original reduced compounds by dithiothreitol. By reducing these two types of disulfides separately during sample pretreatment, the reduced, protein-unbound, and total thiol concentrations could also be determined. Validation testing was performed, and no problems were encountered. The limit of detection was approximately 20 pmol of thiol on the column. The present method was used to measure the plasma concentrations of NAC and Cys in the rat after a bolus intravenous administration of NAC, focusing on disulfide formation. The binding of NAC to protein through mixed disulfide formation proceeds in a time-dependent and reversible manner. Moreover, this “stable” covalent binding might limit total drug elimination, while the unbound NAC is rapidly eliminated. Consequently, the analytical method described in this study is very useful for the determination of plasma NAC and Cys, including disulfide conjugates derived from them. 相似文献
4.
Toshihiko Kitajima Emi Yagi Tomomi Kubota Yasunori Chiba Satoshi Nishikawa & Yoshifumi Jigami 《FEMS yeast research》2009,9(3):439-445
Yeast is widely used to determine the tertiary structure of eukaryotic proteins, because of its ability to undergo post-translational modifications such as glycosylation. A mutant lacking S -adenosylmethionine synthesis has been reported as a suitable host for producing selenomethionine derivatives, which can help solve phase problems in protein crystallography. However, the mutant required external addition of S -adenosylmethionine for cell proliferation. Here, a selenomethionine-resistant Pichia pastoris mutant that showed S -adenosylmethionine autotrophy was isolated. Human lysozyme expressed by the mutant under the control of constitutive promoter contained selenomethionine at 65% occupancy, sufficient for use as a selenomethionine derivative for single-wavelength anomalous dispersion phasing. 相似文献
5.
Immunohistochemical Localization of Arginase II and Other Enzymes of Arginine Metabolism in Rat Kidney and Liver 总被引:5,自引:0,他引:5
Kei Miyanaka Tomomi Gotoh Akitoshi Nagasaki Motohiro Takeya Mikiko Ozaki Katsuro Iwase Masaki Takiguchi Ken-Ichi Iyama Kimio Tomita Masataka Mori 《The Histochemical journal》1998,30(10):741-751
Arginine is a precursor for the synthesis of urea, polyamines, creatine phosphate, nitric oxide and proteins. It is synthesized from ornithine by argininosuccinate synthetase and argininosuccinate lyase and is degraded by arginase, which consists of a liver-type (arginase I) and a non-hepatic type (arginase II). Recently, cDNAs for human and rat arginase II have been isolated. In this study, immunocytochemical analysis showed that human arginase II expressed in COS-7 cells was localized in the mitochondria. Arginase II mRNA was abundant in the rat small intestine and kidney. In the kidney, argininosuccinate synthetase and lyase were immunostained in the cortex, intensely in proximal tubules and much less intensely in distal tubules. In contrast, arginase II was stained intensely in the outer stripes of the outer medulla, presumably in the proximal straight tubules, and in a subpopulation of the proximal tubules in the cortex. Immunostaining of serial sections of the kidney showed that argininosuccinate synthetase and arginase II were collocalized in a subpopulation of proximal tubules in the cortex, whereas only the synthetase, but not arginase II, was present in another subpopulation of proximal tubules. In the liver, all the enzymes of the urea cycle, i.e. carbamylphosphate synthetase I, ornithine transcarbamylase, argininosuccinate synthetase and lyase and arginase I, showed similar zonation patterns with staining more intense in periportal hepatocytes than in pericentral hepatocytes, although zonation of ornithine transcarbamylase was much less prominent. The implications of these results are discussed. 相似文献
6.
Kawanabe Y Hashimoto N Masaki T 《American journal of physiology. Heart and circulatory physiology》2002,283(6):H2671-H2675
The purpose of this study was to demonstrate the involvement of Ca(2+) influx through voltage-independent Ca(2+) channels (VICCs) in endothelin-1 (ET-1)-induced transactivation of epidermal growth factor receptor protein tyrosine kinase (EGFR PTK) using the Ca(2+) channel blockers LOE-908 and SK&F-96365 in rabbit internal carotid artery vascular smooth muscle cells. ET-1-induced EGFR PTK transactivation was completely inhibited by AG-1478, which is a specific inhibitor of EGFR PTK. In the absence of extracellular Ca(2+), the magnitude of EGFR PTK transactivation was near the basal level. Based on sensitivity to nifedipine, which is a specific blocker of voltage-operated Ca(2+) channels (VOCCs), VOCCs have minor roles in EGFR PTK transactivation. In contrast, Ca(2+) influx through VICCs plays an important role in EGFR PTK transactivation. Moreover, based on the sensitivity of VICCs to SK&F-96365 and LOE-908, VICCs were shown to consist of two types of Ca(2+)-permeable nonselective cation channels (NSCCs), which are designated NSCC-1 and NSCC-2, and a store-operated Ca(2+) channel. In summary, Ca(2+) influx through VICCs plays an essential role in ET-1-induced EGFR PTK transactivation in rabbit internal carotid artery vascular smooth muscle cells. 相似文献
7.
The vascular system of the mouse retina provides a useful model for analyzing the molecular and cellular mechanisms regulating angiogenesis because (1) hierarchical vascular networks are newly formed only after birth, (2) the cellular components involved in angiogenesis are well characterized, and (3) all the processes are accessible for monitoring and manipulation. In this article, we present an overview of our current understanding of the process of retinal angiogenesis and describe a number of methodologies applicable to experimental manipulation of the retinal vascular system. 相似文献
8.
Gang Ma Lancui Zhang Asami Matsuta Kazuki Matsutani Kazuki Yamawaki Masaki Yahata Anung Wahyudi Reiko Motohashi Masaya Kato 《Plant physiology》2013,163(2):682-695
In this study, the pathway of β-citraurin biosynthesis, carotenoid contents and the expression of genes related to carotenoid metabolism were investigated in two varieties of Satsuma mandarin (Citrus unshiu), Yamashitabeni-wase, which accumulates β-citraurin predominantly, and Miyagawa-wase, which does not accumulate β-citraurin. The results suggested that CitCCD4 (for Carotenoid Cleavage Dioxygenase4) was a key gene contributing to the biosynthesis of β-citraurin. In the flavedo of Yamashitabeni-wase, the expression of CitCCD4 increased rapidly from September, which was consistent with the accumulation of β-citraurin. In the flavedo of Miyagawa-wase, the expression of CitCCD4 remained at an extremely low level during the ripening process, which was consistent with the absence of β-citraurin. Functional analysis showed that the CitCCD4 enzyme exhibited substrate specificity. It cleaved β-cryptoxanthin and zeaxanthin at the 7,8 or 7′,8′ position. But other carotenoids tested in this study (lycopene, α-carotene, β-carotene, all-trans-violaxanthin, and 9-cis-violaxanthin) were not cleaved by the CitCCD4 enzyme. The cleavage of β-cryptoxanthin and zeaxanthin by CitCCD4 led to the formation of β-citraurin. Additionally, with ethylene and red light-emitting diode light treatments, the gene expression of CitCCD4 was up-regulated in the flavedo of Yamashitabeni-wase. These increases in the expression of CitCCD4 were consistent with the accumulation of β-citraurin in the two treatments. These results might provide new strategies to improve the carotenoid contents and compositions of citrus fruits.Carotenoids, a diverse group of pigments widely distributed in nature, fulfill a variety of important functions in plants and play a critical role in human nutrition and health (Schwartz et al., 1997; Cunningham and Gantt, 1998; Havaux, 1998; Krinsky et al., 2003; Ledford and Niyogi, 2005). The pathway of carotenoid biosynthesis has been well documented in various plant species, including Arabidopsis (Arabidopsis thaliana; Park et al., 2002), tomato (Lycopersicon esculentum; Isaacson et al., 2002), pepper (Capsicum annuum; Bouvier et al., 1998), citrus (Citrus spp.; Kato et al., 2004, 2006; Rodrigo et al., 2004; Rodrigo and Zacarías, 2007; Kato, 2012; Zhang et al., 2012a), and apricot (Prunus armenaica; Kita et al., 2007). Genes encoding the enzymes in the carotenoid biosynthetic pathway have been cloned, and their expression profiles have also been characterized (Fig. 1). As carotenoids contain a series of conjugated double bonds in the central chain, they can be oxidatively cleaved in a site-specific manner (Mein et al., 2011). The oxidative cleavage of carotenoids not only regulates their accumulation but also produces a range of apocarotenoids (Walter et al., 2010). In higher plants, many different apocarotenoids derive from the cleavage of carotenoids and have important metabolic functions, such as plant hormones, pigments, aroma and scent compounds, as well as signaling compounds (Fig. 1). A well-known example is abscisic acid, which is a C15 compound derived from the cleavage of the 11,12 double bond of 9-cis-violaxanthin and 9′-cis-neoxanthin (Schwartz et al., 1997; Tan et al., 1997; Cutler and Krochko, 1999; Chernys and Zeevaart, 2000; Giuliano et al., 2003).Open in a separate windowFigure 1.Carotenoid and apocarotenoid metabolic pathway in plants. GGPP, Geranylgeranyl diphosphate. Enzymes, listed here from top to bottom, are named according to the designation of their genes: PSY, phytoene synthase; PDS, Phytoene desaturase; ZDS, ζ-carotene desaturase; ZISO, 15-cis-ζ-carotene isomerase; CRTISO, carotenoid isomerase; LCYb, lycopene β-cyclase; LCYe, lycopene ε-cyclase; HYe, ε-ring hydroxylase; HYb, β-ring hydroxylase; ZEP, zeaxanthin epoxidase; VDE, violaxanthin deepoxidase; NCED, 9-cis-epoxycarotenoid dioxygenase.Carotenoid cleavage dioxygenases (CCDs) are a group of enzymes that catalyze the oxidative cleavage of carotenoids (Ryle and Hausinger, 2002). CCDs are nonheme iron enzymes present in plants, bacteria, and animals. In plants, CCDs belong to an ancient and highly heterogenous family (CCD1, CCD4, CCD7, CCD8, and 9-cis-epoxycarotenoid dioxygenases [NCEDs]). The similarity among the different members is very low apart from four strictly conserved His residues and a few Glu residues (Kloer and Schulz, 2006; Walter et al., 2010). In Arabidopsis, the CCD family contains nine members (CCD1, NCED2, NCED3, CCD4, NCED5, NCED6, CCD7, CCD8, and NCED9), and orthologs in other plant species are typically named according to their homology with an Arabidopsis CCD (Huang et al., 2009). In our previous study, the functions of CitCCD1, CitNCED2, and CitNCED3 were investigated in citrus fruits (Kato et al., 2006). The recombinant CitCCD1 protein cleaved β-cryptoxanthin, zeaxanthin, and all-trans-violaxanthin at the 9,10 and 9′,10′ positions and 9-cis-violaxanthin at the 9′,10′ position. The recombinant CitNCED2 and CitNCED3 proteins cleaved 9-cis-violaxanthin at the 11,12 position to form xanthoxin, a precursor of abscisic acid (Kato et al., 2006). To date, information on the functions of other CCDs in citrus fruits remains limited, while the functions of CCD7 and CCD8, as well as NCED5, NCED6, and NCED9, in Arabidopsis have been characterized (Kloer and Schulz, 2006; Walter et al., 2010). In Arabidopsis, CCD7 cleaves all-trans-β-carotene at the 9′,10′ position to form all-trans-β-apo-10′-carotenal. All-trans-β-apo-10′-carotenal is further shortened by AtCCD8 at the 13,14 position to produce β-apo-13-carotenone (Alder et al., 2012). NCED5, NCED6, and NCED9 cleave 9-cis-violaxanthin at the 11,12 position to form xanthoxin (Tan et al., 2003). Compared with other CCDs, the function of CCD4 is poorly understood. In Chrysanthemum morifolium, CmCCD4a contributed to the white color formation by cleaving carotenoids into colorless compounds (Ohmiya et al., 2006). Recently, it has been reported that CsCCD4, CmCCD4a, and MdCCD4 could cleave β-carotene to yield β-ionone (Rubio et al., 2008; Huang et al., 2009).β-Citraurin, a C30 apocarotenoid, is a color-imparting pigment responsible for the reddish color of citrus fruits (Farin et al., 1983). In 1936, it was first discovered in Sicilian oranges (Cual, 1965). In citrus fruits, the accumulation of β-citraurin is not a common event; it is only observed in the flavedos of some varieties during fruit ripening. The citrus varieties accumulating β-citraurin are considered more attractive because of their red-orange color (Ríos et al., 2010). Although more than 70 years have passed since β-citraurin was first identified, the pathway of its biosynthesis is still unknown. As its structure is similar to that of β-cryptoxanthin and zeaxanthin, β-citraurin was presumed to be a degradation product of β-cryptoxanthin or zeaxanthin (Oberholster et al., 2001; Rodrigo et al., 2004; Ríos et al., 2010; Fig. 1). To date, however, the specific cleavage reaction producing β-citraurin has not been elucidated. In this study, we found that the CitCCD4 gene was involved in the synthesis of β-citraurin, using two citrus varieties of Satsuma mandarin (Citrus unshiu), Yamashitabeni-wase, which accumulates β-citraurin predominantly, and Miyagawa-wase, which does not accumulate β-citraurin. To confirm the role of the CitCCD4 gene further, functional analyses of the CitCCD4 enzyme were performed in vivo and in vitro. Additionally, the regulation of β-citraurin content and CitCCD4 gene expression in response to ethylene and red light-emitting diode (LED) light treatments was also examined. This study, to our knowledge, is the first to investigate the biosynthesis of β-citraurin in citrus fruits. The results might provide new strategies to enhance the nutritional and commercial qualities of citrus fruits. 相似文献
9.
10.
Nishikawa Y Wang Z Kerns J Wilcox CS Carr BI 《The Journal of biological chemistry》1999,274(49):34803-34810
We recently found that a thioether analog of K vitamin (Cpd 5) inhibited the activity of protein-tyrosine phosphatases (PTPases) and induced protein-tyrosine phosphorylation in a human hepatoma cell line (Hep3B). We have now examined the structural requirements for induction of protein-tyrosine phosphorylation and PTPase inhibition by several K vitamin analogs. Thioether analogs with sulfhydryl arylation capacity, especially those with a hydroxy (Cpd 5) or a methoxy group at the end of the side chain, induced protein-tyrosine phosphorylation, but non-arylating analogs, such as those with an all-carbon or O-ether side chain, did not. Among the receptor-tyrosine kinases, epidermal growth factor receptors were tyrosine-phosphorylated by treatment with thioether analogs, whereas insulin and hepatocyte growth factor receptors were not. An increase in tyrosine-phosphorylated ERK2 mitogen-activated protein kinase was also observed. The activity of purified T cell PTPase was inhibited only by the thioether analogs, but not by non-arylating analogs. Furthermore, the epidermal growth factor receptor dephosphorylation activity of Hep3B cell lysates was inhibited by Cpd 5 treatment. A similar induction of protein-tyrosine phosphorylation by Cpd 5 was seen in other human hepatoma cell lines together with growth inhibition. However, one cell line (HepG2), which was relatively resistant to growth inhibition by Cpd 5, did not increase its phosphorylation levels upon Cpd 5 treatment. These results suggest that cell growth inhibition by thioether analogs is closely associated with inhibition of PTPases by sulfhydryl arylation and with tyrosine phosphorylation of selected proteins. 相似文献