首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1251篇
  免费   59篇
  2023年   3篇
  2022年   11篇
  2021年   21篇
  2020年   11篇
  2019年   16篇
  2018年   11篇
  2017年   17篇
  2016年   26篇
  2015年   42篇
  2014年   61篇
  2013年   58篇
  2012年   76篇
  2011年   103篇
  2010年   64篇
  2009年   47篇
  2008年   105篇
  2007年   88篇
  2006年   79篇
  2005年   78篇
  2004年   72篇
  2003年   88篇
  2002年   70篇
  2001年   9篇
  2000年   7篇
  1999年   9篇
  1998年   14篇
  1997年   4篇
  1996年   11篇
  1995年   14篇
  1994年   7篇
  1993年   14篇
  1992年   9篇
  1991年   9篇
  1990年   6篇
  1989年   11篇
  1988年   7篇
  1987年   1篇
  1986年   7篇
  1985年   2篇
  1984年   4篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1965年   2篇
排序方式: 共有1310条查询结果,搜索用时 15 毫秒
1.
2.
The primary structure ofHLA-B51 andHLA-Bw52 suggested thatHLA-B51 was derived fromHLA-Bw52 by the combination of a genetic exchange withHLA-B8 and a point mutation. To investigate the evolution of theHLA-B5 cross reactive group, theHLA-B35 gene was cloned and the primary structure was determined.HLA-B35 is identical toHLA-Bw58 except in the α1 domain. The α1 domain ofHLA-B35 except Bw4/Bw6-associated amino acids is identical to that ofHLA-B51 *, which was suspected to be an intermediate gene betweenHLA-B51 andHLA-Bw52. These data suggest thatHLA-B35 has evolved fromHLA-Bw58 in two steps; an in vivo replacement of the α1 domain withHLA-B51 and genetic exchange with one of theHLA-Bw6 genes. These three genes andHLA-Bw58 are postulated to share a common ancestor.  相似文献   
3.
Although the optimum substrate for lipoamidase (lipoyl-X hydrolase) has not yet been determined, it is known that lipoamidase activity, as determined by hydrolysis of the synthetic substrate lipoyl 4-aminobenzoate (LPAB), is widely distributed in pig brain tissues, i.e. in the cerebrum, cerebellum and medulla. Over 95% of the enzyme activity is present in the membrane subfractions, indicating that brain lipoamidase is an integral membrane protein enzyme. To elucidate the chemical nature and the optimum substrate of the abundant lipoamidase in the brain, we isolated it from the membrane subfractions. After an 8-step purification procedure, brain lipoamidase was purified 601-fold and identified as a 140 kDa glycoprotein by SDS/PAGE. A mechanistic study to determine Km and Vmax, values was carried out using various synthetic compounds. Lipoyl-lysine, which is generally believed to be a naturally occurring substrate of lipoamidase, was first compared with biotinyl-lysine, because these two vitamins have reactive sulphur atoms and are similar in molecular mass and structure. The Km for lipoyl-lysine was 333 microM, whereas biotinyl-lysine was not hydrolysed. Stringent specificity for the lipoyl moiety is demonstrated, as expected. Dipeptides of amino acid-lysine structures were studied, and dipeptides of aspartyl- and glutamyl-lysine hydrolysis occurred at high Km (3 mM) values. Thus lysine in the moiety is not very effective as an optimum substrate. The chemical bond structures of the amide bond (lipoyl-lysine) and peptide bond (aspartyl-lysine) were hydrolysed. Next, the ester bond compound was tested, and it was observed that lipolylmethyl ester was hydrolysed at high specificity. These findings indicate that this enzyme has broad specificities with respect to bond structure; it therefore is a unique hydrolase having stringent specificity for lipoic acid and relatively broad specificity for the chemical bond and the X moiety. Various inhibitors were tested; a few reagents, such as organic mercurials, di-isopropylfluorophosphate, 1,10-phenanthroline, sodium azide and angiotensin-converting enzyme inhibitor exhibited some inhibition (not more than 60%). Thus the active centre of this enzyme is a complex type. Although ATP is not hydrolysed and the lowest Km value is exhibited by the synthetic substrate reduced from LPAB (12 microM), some other compounds may still be expected to be hydrolysed by this unique and abundant brain lipoamidase.  相似文献   
4.
A new human acute lymphoblastic leukemia (ALL) cell line, designated HBL-3, was established from the bone marrow of a patient with non-T-ALL. The HBL-3 cell line expressed B4 (CD 19), BA-1 (CD 24) and HLA-DR antigens, but not surface immunoglobulin (SIg) or cytoplasmic immunoglobulin (CIg). The cell line lacked the common acute lymphoblastic leukemia antigen (CALLA) and antigenic markers characteristic of T-cell and myeloid cell lineages. The HBL-3 cells had structural rearrangements of both the homologous chromosome 9s, including a translocation with chromosome 1 which has been reported in a patient with common ALL. The cell line had rearranged immunoglobulin heavy chain genes but retained germ-line κ light chain genes and germ-line T-cell receptorβ- and γ-chain genes. The HBL-3 cell line was strongly positive for terminal deoxynucleotidyl transferase (TdT). These findings indicate that the HBL-3 cell line is derived from the earliest B-cell committed to B-cell lineage.  相似文献   
5.
Various metals have been shown to inhibit porcine brain lipoamidase activity at 0.1 mM, but not ferrous and ferric ions. However, in the presence of ethylenediamine tetraacetic acid (EDTA) 0.1 mM iron ions did inhibit the activity. No other metals exhibited this type of increased inhibition with the addition of EDTA. The ferric- and ferrous-EDTA compounds were equally effective. Various Fe-containing compounds also inhibited the enzyme activity, the order of inhibition being: EDTA greater than o-phenanthroline greater than azide greater than citrate. Hemin also inhibited the enzyme activity strongly. However, Fe-proteins, e.g. cytochrome c, transferrin and peroxidases, were not inhibitory. These results indicate the importance of Fe ion chelates with structural and molecular size differences for interaction with the reaction center of this enzyme.  相似文献   
6.
7.
The vascular basement membrane is involved in the regulation of endothelial cell differentiation. The accumulation of advanced glycosylation endproducts (AGEs) has been demonstrated on these basement membranes in patients with diabetes. We examined the effect of AGEs on endothelial cell behavior on reconstituted basement membrane, Matrigel. Human umbilical vein-derived endothelial cells (HUVECs) stopped proliferating and differentiated into capillary-like tube-shaped structures on Matrigel. Laminin antibody partially blocked this process. HUVECs cultured on glycosylated Matrigel, however, proliferated and formed a monolayer without tube formation. The inclusion of aminoguanidine, an inhibitor of AGE formation, during the glycosylation of Matrigel restored HUVEC differentiation. Although the laminin adsorbed onto the plastic culture wells promoted HUVEC attachment and spreading, glycosylated laminin reduced HUVEC attachment by 50% and abolished cellular spreading. These effects were restored by aminoguanidine. HUVEC attachment to glycosylated laminin was further reduced by AGE-modified albumin, poly I, acetylated low-density lipoprotein, or maleylated albumin, ligands for a scavenger receptor. Coating the culture dishes with the laminin peptides RGD, YIGSR, and SIKVAV supported the attachment of HUVECs that was unaffected by glycosylation. Results suggest that AGE accumulation on the basement membranes inhibits endothelial cell differentiation by impairing the normal interactions of endothelial cell receptors with their specific matrix ligands. This process may be involved in diabetic angiopathy.  相似文献   
8.
 HLA-B*3501 is associated with subacute thyroiditis and fast progression of AIDS. An important prerequisite to investigate the T-cell recognition of HLA-B*3501-restricted antigens is the characterization of peptide-HLA-B*3501 interactions. In this study, peptide-HLA-B*3501 interactions were determined in quantitative peptide binding assays. The results were statistically analyzed to evaluate the influence of both anchor and nonanchor positions and the predictability of peptide binding. The binding data demonstrated that all anchor residues at position 2 and the C-terminus found in 9-mers functioned equally as anchors in 10-mers and 11-mers. These minimum requirements of peptide binding were refined by assessing positive and negative effects of nonanchor residues. Aliphatic hydrophobic residues at positions 3, 5, and 8 of 10-mers and position 3 of 11-mers significantly enhanced HLA-B*3501 binding. Similar effects rendered aromatic, bulky residues, acidic or polar residues of 11-mers at position 1 as well as at positions 4, 8, and 10, respectively. Negative effects were observed for residues carrying positively charged side-chains at position 7 of 11-mers. The refined HLA-B*3501 peptide binding motifs enhanced the identification of potential T-cell epitopes. The disparity between positive effects at the middle and C-terminal part (positions 5 – 8 and 10) of 11-mers and shorter peptides supports the extrusion of 11-mer residues at positions 5, 6, and 7, away from the HLA-B*3501 binding cleft. Received: 29 May 1996 / Revised: 5 August 1996  相似文献   
9.
The interaction between 9-mer peptides and HLA-B51 molecules was investigated by quantitative peptide binding assay using RMA-S cell expressing human β2-microglobulin and HLA-B51 molecules. Of 147 chemically synthesized 9-mer peptides possessing two anchor residues corresponding to the motif of HLA-B*5101 binding self-peptides, 27 paptides bound to HLA-B*5101 molecules. Pro and Ala at position 2 as well as Ile at position 9 were confirmed to be main anchor residues, while Gly at position 2 as well as Val, Leu, and Met at position 9 were weak anchor residues for HLA-B*5101. The A-pocket is suspected to have a critical role in peptide binding to MHC class I molecules because this pocket corresponds to the N-terminus of peptides and has a strong hydrogen bond formed by conserved Tyr residues. Further analysis of peptide binding to HLA-B*5102 and B*5103 molecules showed that a single amino acid substitution of Tyor for His at residue 171(B*5102) and that of Gly for Trp at residue 167 (B*5103) has a minimum effect in HLA-B51-peptide binding. Since previous studies showed that some HLA-B51 alloreactive CTL clones failed to kill the cells expressing HLA-B*5102 or HLA-B*5103, these results imply that the structural change of the A-pocket among HLA-B51 subtypes causes a critical conformational change of the epitope for TCR recognition rather than influences the interaction between peptides and MHC class I molecules.  相似文献   
10.
Recent studies have suggested that fibroblasts, widely distributed mesenchymal cells, not only function to sustain various organs and tissues as stroma cells but also act directly to regulate adjacent cell behavior including migration, proliferation, and differentiation. Since fibroproliferative diseases and lesions (fibroplasia) are accompanied by new capillary growth (angiogenesis), we hypothesized that fibroblasts may have direct effects on endothelial cell behavior, independent of the elaboration of extracellular matrix, that are relevant to complex process of angiogenesis. To test this hypothesis, bovine aortic endothelial cells were cocultured in collagen gels with human skin fibroblasts. This coculture system caused the endothelial cells to become spindle shaped and to organize into a capillary-like structure within the collagen gels. We found that fibroblast-conditioned medium (FCM) also induced endothelial cells initially to elongate and subsequently to organize into a capillary-like structure within collagen gels. While FCM had no significant effect on endothelial cell DNA synthesis, the soluble factor(s) in FCM increased endothelial cell motility in an in vitro wound assay and in a Boyden chamber assay. The chemoattractant(s) in FCM was alkaline (pH 9.0)—and acid (pH 3.0)—stable, relatively heat stable (stable at 60°C for 30 min, unstable at 98°C for 3 min), dithiothreitol (DTT)-sensitive, and bound to an anionic exchange resin (DEAE-cellulose). Another factor(s) stimulated endothelial cell reorganization into capillary-like structure both within a collagen gel and on a reconstituted basement membrane matrix, Matrigel. This factor(s) was alkaline (pH 9.0)—and acid (pH 3.0)—stable, heat (98°C for 3 min)stable, and DTT-sensitive and bound an anionic exchange resin (DEAE-cellulose). These in vitro results suggest that fibroblasts secrete soluble factors that can influence endothelial cell behaviors relevant to the angiogenesis process with possible implications for vascularization in fibroproliferative conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号