首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   9篇
  163篇
  2024年   2篇
  2023年   3篇
  2022年   9篇
  2021年   12篇
  2020年   7篇
  2019年   22篇
  2018年   14篇
  2017年   12篇
  2016年   8篇
  2015年   6篇
  2014年   11篇
  2013年   13篇
  2012年   12篇
  2011年   12篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2001年   1篇
  1998年   2篇
  1953年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
1.
Removal efficiency of gold from a solution of pure tetrachloroaurate ions was investigated using microbial fuel cell (MFC) technology. The effects of type of catholyte solution and initial gold concentration on the removal efficiency were considered. Due to its presence at high levels in the gold wastewater, the effect of copper ions on the removal efficiency of the gold ions was also studied. The effects of pH and initial biomass concentration on the gold removal efficiency was also determined. The results showed that after 5 h contact time, 95% of gold removal efficiency from a wastewater containing 250 ppm of initial gold ions at ambient temperature using 80 g/L yeast concentration was achieved. After 48 h of the cell''s operation under the same condition, 98.86% of AuCl4 ions were successfully removed from the solution. At initial gold concentration in the waste solution of 250 ppm, pH 2, and initial yeast concentration of 80 g/L, 100% removal efficiency of the gold was achieved. On the other hand, the most suitable condition for copper removal was found at a pH of 5.2, where 53% removal efficiency from the waste solution was accomplished.  相似文献   
2.
Heavy metals’ origin, accumulation, and distribution in soil have been the focus of much attention by many researchers. The objective of this study was to recognize the sources of heavy metals in surface soils in Hamadan Province in western Iran using multivariate geostatistical techniques. A total of 263 surface (0–10 cm) soil samples and 18 rock samples from major parent materials were collected. Cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) contents of the samples were determined. Selected soil physical and chemical characteristics were also measured. A multivariate geostatistical analysis was performed to identify the common source of heavy metals. The quantities of Co, Cr, and Ni were found to be associated with parent rocks, corresponding to the first factor termed the “lithologic component.” The second factor was mainly attributed to Cu, which also comprised the first and third factors, indicating a mixed source both from lithologic and anthropogenic inputs. Zn and Pb contents were related to the anthropogenic activities and comprised the third factor. A significant correlation was found between metals from the lithogenic sources and selected soil properties such as soil organic matter, clay, CEC, and carbonate, indicating an interaction among them. Generally, Zn and Pb showed a less significant correlation with soil properties.  相似文献   
3.

One of the technology for increasing the safety and welfare of humans in roads is Vehicular Cloud Computing (VCC). This technology can utilize cloud computing advantages in the Vehicular Ad Hoc Network (VANET). VCC by utilizing modern equipment along with current vehicles, can play a significant role in the area of smart transportation systems. Given the potential of this technology, effective methods for managing existing resources and providing the expected service quality that is essential for such an environment are not yet available as it should. One of the most important barriers to providing such solutions seems to be resource constraints and very high dynamics in vehicles in VCC. In this article, based on virtualization and taking into account the environment with these features, we propose simple ways to manage resources better and improve the quality of service. We were able to achieve better results in simulation than previous methods by providing a flexible data structure to control the important data in the environment effectively. To illustrate the impact of the proposed methods, we compared them with some of the most important methods in this context, and we used SUMO 1.2.0 and MATLAB R2019a software to simulate them. Simulation results indicate that the proposed methods provide better results than previous methods in terms of resource efficiency, Quality of Service (QoS), and load balancing.

  相似文献   
4.
Constitutive phosphorylation of protein kinase B (AKT) is a common feature of cancer caused by genetic alteration in the phosphatase and tensin homolog (PTEN) gene and is associated with poor prognosis. This study determined the role of cytosolic phospholipase A2α (cPLA2α) in AKT, extracellular signal-regulated kinase (ERK) and androgen receptor (AR) signaling in PTEN-null/mutated prostate cancer cells. Doxycycline (Dox)-induced expression of cPLA2α led to an increase in pAKT, pGSK3β and cyclin D1 levels in LNCaP cells that possess a PTEN frame-shift mutation. In contrast, silencing cPLA2α expression with siRNA decreased pAKT, pGSK3β and cyclin D1 levels in both PC-3 (PTEN deletion) and LNCaP cells. Silencing of cPLA2α decreased pERK and AR protein levels. The inhibitory effect of cPLA2α siRNA on pAKT and AR protein levels was reduced by the addition of arachidonic acid (AA), whereas the stimulatory effect of AA on pAKT, pERK and AR levels was decreased by an inhibitor of 5-hydroxyeicosatetraenoic acid production. Pharmacological blockade of cPLA2α with Efipladib reduced pAKT and AR levels with a concomitant inhibition of PC-3 and LNCaP cell proliferation. These results demonstrate an important role for cPLA2α in sustaining AKT, ERK and AR signaling in PTEN-null/mutated prostate cancer cells and provide a potential molecular target for treating prostate cancer.  相似文献   
5.
Mechanical stress caused by agitation is one of the factors that can affect hematopoietic stem cell expansion in suspension bioreactors. Therefore, we have investigated the effects of agitation on umbilical cord blood hematopoietic stem cell (UCB-HSC) growth and differentiation. A comparison was made between various agitation rates (20, 40 and 60 rpm) in spinner-flask and cells cultured in glass petri dish as a static culture. Moreover, the fluid dynamic at various agitation rates of spinner-flask was analyzed to determine shear stress. The spinner-flask contained a rotational moving mixer with glass ball and was kept in tissue culture incubator. To reduce consumption of cytokines, UCB-serum was used which widely decreased the costs. Our results determined that, agitation rate at 40 rpm promoted UCB-HSCs expansion and their colony forming potential. Myeloid progenitors were the main type of cells at 40 rpm agitation rate. The results of glucose consumption and lactic acid production were in complete agreement with colony assay and expansion data and indicated the superiority of culture in spinner-flask when agitated at 40 rpm over to other agitation speeds and also static culture. Cell viability and colony count was affected by changing the agitation speed. We assume that changes in cell growth resulted from the effect of shear stress directly on cell viability, and indirectly on signaling pathways that influence the cells to differentiate.  相似文献   
6.
Several evidences support the idea that a small population of tumour cells representing self‐renewal potential are involved in initiation, maintenance, metastasis, and outcomes of cancer therapy. Elucidation of microRNAs/genes regulatory networks activated in cancer stem cells (CSCs) is necessary for the identification of new targets for cancer therapy. The aim of the present study was to predict the miRNAs pattern, which can target both metastasis and self‐renewal pathways using integration of literature and data mining. For this purpose, mammospheres derived from MCF‐7, MDA‐MB231, and MDA‐MB468 were used as breast CSCs model. They had higher migration, invasion, and colony formation potential, with increasing in stemness‐ and EMT‐related genes expression. Our results determined that miR‐204, ‐200c, ‐34a, and ‐10b contemporarily could target both self‐renewal and EMT pathways. This core regulatory of miRNAs could increase the survival rate of breast invasive carcinoma via up‐regulation of OCT4, SOX2, KLF4, c‐MYC, NOTCH1, SNAI1, ZEB1, and CDH2 and down‐regulation of CDH1. The majority of those target genes were involved in the regulation of pluripotency, MAPK, WNT, Hedgehog, p53, and transforming growth factor β pathways. Hence, this study provides novel insights for targeting core regulatory of miRNAs in breast CSCs to target both self‐renewal and metastasis potential and eradication of breast cancer.  相似文献   
7.
This study aimed to evaluate proposed molecular markers related to eye limbal stem cells (SC) and to identify novel associated genes. The expression of a set of genes potentially involved in stemness was assessed in freshly prepared limbal, corneal and conjunctival tissues. PAX6, AC133, K12 and OCT4 were detected in all the tissues and p63(+)/K3(-)/K12(+)/Nodal(+)/Cx43(+) were expressed in conjunctival, p63(-)/K3(+)/K12(+)/Nodal(-)/Cx43(+) in corneal, and p63(+)/K3(-)/K12(-)/Nodal(-)/Cx43(-) in limbal tissues. Limbal explants were cultured on human amniotic membrane for 21 days. The cells expressed p63 but not K3, K12, Nodal and Cx43, however, the expression of K3, K12 and Cx43 was detected, and p63 and the high BrdU-labeling index decreased with more culture. Ultrastructure analysis of the cultured cells showed typically immature organization of intracellular organelles and architecture. Our data suggest that limbal, corneal and conjunctival tissues are heterogeneous with some progenitors. Also, the expression of traditional SC markers may not be a reliable indicator of limbal SC and there is an increasing need to determine factor(s) involved in their stemness.  相似文献   
8.
9.
The reaction of the bidentate Schiff-base ligands (3,4,5-MeO-ba)2en (L1) and (4-Me-ba)2en (L2) with Cu(SCN) in CH3CN yielded two copper(I) coordination polymers [Cu(L1)(SCN)]n (1) and [Cu(L2)(SCN)]n (2), which have been characterized by elemental analyses, IR- and 1H NMR-spectroscopy, and X-ray crystallography. The non-centrosymmetric structures of both Cu(I) complexes consist of an one-dimensional polymeric chain in which copper(I) ions are bridged by two thiocyanate groups bonding in an end-to-end fashion. The Cu(I)?Cu(I) separation is 5.604 Å in 1 and 5.706 Å in 2.  相似文献   
10.
In the present study, the effect of nanosized graphene oxide layer on thermal stability and biocompatibility of gold nanorods has been examined. The graphene oxide-wrapped gold nanorods were prepared by electrostatic interaction between negatively charged graphene oxide and positively charged nanorods. The resulting nanohybrids were then heated at different time intervals to 95 °C in a water bath to assess the effect of heat on the rods morphology. The structural changes in gold nanorods were monitored via UV-Vis spectroscopy measurements and transmission electron microscopy images. In similar experiments, the graphene oxide used to wrap gold nanorods was reduced by ascorbic acid in a 95 °C water bath. Our results indicate that while bare gold nanorods are highly vulnerable to elevated temperatures, graphene oxide and reduced graphene oxide-coated gold nanorods remain thermally stable with no structural changes. We also confirmed that the enhanced thermal stability is highly dependent on the concentration of deposited graphene oxide available on the surface of the gold nanorods. In addition, we performed an MTT (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazoliumbromide) assay to make a comparison between the cytotoxicity of the nanohybrids and their primary building blocks on human dermal fibroblast cells as a normal cell line. We found evidence that graphene oxide can enhance the biocompatibility of the rods through covering toxic chemicals on the surface of them.
Graphical Abstract ?
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号