首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   7篇
  96篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   7篇
  2012年   9篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   3篇
  2007年   9篇
  2006年   6篇
  2005年   3篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1992年   1篇
  1976年   2篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有96条查询结果,搜索用时 0 毫秒
1.
The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are emerging zoonotic paramyxoviruses that can cause severe and often lethal neurologic and/or respiratory disease in a wide variety of mammalian hosts, including humans. There are presently no licensed vaccines or treatment options approved for human or veterinarian use. Guinea pigs, hamsters, cats, and ferrets, have been evaluated as animal models of human HeV infection, but studies in nonhuman primates (NHP) have not been reported, and the development and approval of any vaccine or antiviral for human use will likely require efficacy studies in an NHP model. Here, we examined the pathogenesis of HeV in the African green monkey (AGM) following intratracheal inoculation. Exposure of AGMs to HeV produced a uniformly lethal infection, and the observed clinical signs and pathology were highly consistent with HeV-mediated disease seen in humans. Ribavirin has been used to treat patients infected with either HeV or NiV; however, its utility in improving outcome remains, at best, uncertain. We examined the antiviral effect of ribavirin in a cohort of nine AGMs before or after exposure to HeV. Ribavirin treatment delayed disease onset by 1 to 2 days, with no significant benefit for disease progression and outcome. Together our findings introduce a new disease model of acute HeV infection suitable for testing antiviral strategies and also demonstrate that, while ribavirin may have some antiviral activity against the henipaviruses, its use as an effective standalone therapy for HeV infection is questionable.Hendra virus (HeV) and Nipah virus (NiV) are members of the genus Henipavirus (family Paramyxoviridae) that can cause severe respiratory illness and/or encephalitis in a wide variety of mammals, including horses, pigs, and humans (7, 23). HeV was identified as the causative agent of an acute respiratory disease in horses in 1994 in Queensland, Australia (23), and to date there have been 14 outbreaks in Australia since, with at least one occurrence per year since 2006, most recently in May 2010 (ProMed-mail no. 20100522.1699 [International Society for Infectious Diseases, http://www.promedmail.org]). Every outbreak of HeV has involved horses as the initial infected host, and there have been a total of seven human cases arising from exposure to infected horses. Four human fatalities have occurred (22), with the most recent occurring in August of 2009 (ProMed-mail no. 20090826.2998 and 20090903.3098). All patients initially presented with influenza-like illnesses (ILIs) after an incubation period of 7 to 16 days. While two individuals recovered from ILI, one patient developed pneumonitis and died from multiorgan failure. Three of the lethal cases developed encephalitic manifestations (mild confusion and ataxia), with two patients experiencing seizures (22, 23, 27).Data on the histopathology of fatal human HeV cases are limited, but the pathology includes small necrotic plaques in the cerebrum and cerebellum, in addition to mild parenchymal inflammation (21, 27). Severe parenchymal inflammation and necrosis were observed in the lungs. More extensive histopathologic data are available from 32 autopsies of fatal human NiV cases (28). Similarly to the HeV cases, pathology was characterized by systemic vasculitis and parenchymal necrosis in the central nervous system (CNS), while in the lung, pathological findings mainly included vasculitis, fibrinoid necrosis, alveolar hemorrhage, pulmonary edema, and aspiration pneumonia. Other organs that were affected included heart, kidney, and spleen and showed generally mild or focal inflammation. The development of syncytial multinucleated endothelial cells is characteristic of both HeV and NiV (27, 28). At present, the details of the pathogenesis and histopathological changes mediated by either HeV or NiV infection in humans are naturally derived from only the late phases of the disease course, and therefore a relevant animal model is needed that mimics the disease progression seen in humans.Pteropid fruit bats, commonly known as flying foxes in the family Pteropodidae, are the principle natural reservoirs for both NiV and HeV (reviewed in reference 3). However, these henipaviruses display a broad species tropism, and in addition to bats, horses and humans, natural and/or experimental infection of HeV has been demonstrated in guinea pigs, hamsters, pigs, cats, and ferrets (25). Experimental infections of Syrian hamsters with HeV is lethal, and animals show disease similar to that of human cases, including respiratory and neurological symptoms, depending on the dose (11; unpublished data). In this model, viral RNA can be detected in various organs of infected hamsters, including brain, lung, kidney, heart, liver, and spleen. The main histopathological findings included parenchymal infection in various organs, including the brain, with vasculitis and syncytial multinucleated endothelial cells in many blood vessels (11). While this model is useful in studying pathogenesis, it is limited in the availability of reagents to do so.There are currently no vaccines or treatments licensed for human use. Several in vitro studies have shown that ribavirin is effective against both HeV and NiV infection (1, 2, 29). An open-label ribavirin treatment trial was run during an outbreak of NiV in Malaysia in 1998 and reported to reduce mortality by 36% (6). Of the seven recorded human HeV cases, three patients were treated with ribavirin, one of whom survived (22). In the most recent outbreak of HeV in Australia, three additional people received ribavirin treatment in combination with chloroquine after suspected exposure to HeV-contaminated secretions from infected horses. While all three individuals survived, infection was not confirmed, and therefore it remains unknown whether the treatment had any beneficiary effect (ProMed-mail no. 20090826.2998). In addition, two animal studies in hamsters showed that ribavirin treatment delays but does not prevent death from NiV or HeV infection (8, 10). Therefore, an animal model with greater relevance to humans and that recapitulates the disease processes seen in human cases of HeV is needed to get a better answer to whether ribavirin might be effective against henipavirus infections. In addition, the U.S. FDA implemented the “Animal Efficacy Rule,” which specifically applies to the development of therapeutic products when human efficacy studies are not possible or ethical, such as is often the case with highly virulent pathogens like HeV (24). Essentially, this rule allows for the evaluation of vaccines or therapeutics using data derived from studies carried out in at least two animal models. The licensure of any therapeutic modalities for HeV will require a thorough evaluation of HeV pathogenesis in nonhuman primates (NHPs).In the present study, we report the development and characterization of a new nonhuman primate (NHP) model of lethal HeV infection in the African green monkey (AGM). The pathogenesis and disease progression in the AGM upon HeV infection essentially mirrored the lethal disease episodes seen among human cases of HeV. Using this new model, the efficacy of ribavirin treatment against lethal challenge with HeV was examined. Here we have shown that ribavirin treatment can significantly delay but not prevent death of AGMs from lethal HeV infection. In addition to severe respiratory symptoms in all animals, prolonged disease progression in ribavirin-treated animals was also marked by the appearance of neurological symptoms.  相似文献   
2.
3.
4.
5.
The angiotensin converting enzyme 2 (ACE2) has been identified as a receptor for the severe acute respiratory syndrome associated coronavirus (SARS-CoV). Here we show that ACE2 expression on cell lines correlates with susceptibility to SARS-CoV S-driven infection, suggesting that ACE2 is a major receptor for SARS-CoV. The soluble ectodomain of ACE2 specifically abrogated S-mediated infection and might therefore be exploited for the generation of inhibitors. Deletion of a major portion of the cytoplasmic domain of ACE2 had no effect on S-driven infection, indicating that this domain is not important for receptor function. Our results point to a central role of ACE2 in SARS-CoV infection and suggest a minor contribution of the cytoplasmic domain to receptor function.  相似文献   
6.
Gratani  L.  Marzi  P.  Crescente  M. F. 《Plant Ecology》1992,(1):155-161
The annual course of vegetative growth of the most representative species of a Quercus ilex L. forest in Castelporziano (Latium, Italy) was studied through periodical analysis of selected ecophysiological leaf indexes, for the period 1987–1990. The results demonstrate that the local climate facilitates continuous vegetative activity of the sclerophyllous species without a latent phase. The variable morphology of sun and shade leaves of Q. ilex illustrates the plant's response to environmental stress.  相似文献   
7.
A series of omega-alkoxy ethers were prepared with variation of the length of the aliphatic chain of suberoylanilide hydroxamic acid (SAHA, vorinostat). Eight carbon long chain analogues showed the best activity, among which several substituted benzyl ether derivatives exhibited inhibitory activity on HDAC comparable to SAHA, and antiproliferative activity on three human cell lines (NB4, H460, and HCT-116) better than SAHA. However, no significant difference in antiproliferative activity was observed between two enantiomers bearing the benzyl ether moiety.  相似文献   
8.
Bacterial translation initiation factor IF2 was localized on the ribosome by rRNA cleavage using free Cu(II):1,10-orthophenanthroline. The results indicated proximity of IF2 to helix 89, to the sarcin-ricin loop and to helices 43 and 44, which constitute the "L11/thiostrepton" stem-loops of 23S rRNA. These findings prompted an investigation of the L11 contribution to IF2 activity and a re-examination of the controversial issue of the effect on IF2 functions of thiostrepton, a peptide antibiotic known primarily as a powerful inhibitor of translocation. Ribosomes lacking L11 were found to have wild-type capacity to bind IF2 but a strongly reduced ability to elicit its GTPase activity. We found that thiostrepton caused a faster recycling of this factor on and off the 70S ribosomes and 50S subunits, which in turn resulted in an increased rate of the multiple turnover IF2-dependent GTPase. Although thiostrepton did not inhibit the P-site binding of fMet-tRNA, the A-site binding of the EF-Tu-GTP-Phe-tRNA or the activity of the ribosomal peptidyl transferase center (as measured by the formation of fMet-puromycin), it severely inhibited IF2-dependent initiation dipeptide formation. This inhibition can probably be traced back to a thiostrepton-induced distortion of the ribosomal-binding site of IF2, which leads to a non-productive interaction between the ribosome and the aminoacyl-tRNA substrates of the peptidyl transferase reaction. Overall, our data indicate that the translation initiation function of IF2 is as sensitive as the translocation function of EF-G to thiostrepton inhibition.  相似文献   
9.
Analogues of suberoylanilide hydroxamic acid (SAHA) were prepared by replacing the Zn-binding group with squaric acid, N-hydroxyurea, and 4-hydroxymethyl oxazoline units, also varying the length of the aliphatic chain. No inhibitory activity on HDAC was observed below 1.0 microM and no cytotoxic activity on different tumor cell lines was seen below 20.0 microM.  相似文献   
10.
The V3 loop of the simian immunodeficiency virus (SIV) envelope protein (Env) largely determines interactions with viral coreceptors. To define amino acids in V3 that are critical for coreceptor engagement, we functionally characterized Env variants with amino acid substitutions at position 324 in V3, which has previously been shown to impact SIV cell tropism. These changes modulated CCR5 engagement and, in some cases, allowed the efficient usage of CCR5 in the absence of CD4. The tested amino acid substitutions had highly differential effects on viral infectivity. Eleven of sixteen substitutions disrupted entry via CCR5 or the alternative coreceptor GPR15. Nevertheless, most of these variants replicated in the macaque T-cell line 221-89 and some also replicated in rhesus macaque peripheral blood monocytes, suggesting that efficient usage of CCR5 and GPR15 on cell lines is not a prerequisite for SIV replication in primary cells. Four variants showed enhanced entry into the macaque sMagi reporter cell line. However, sMagi cells did not express appreciable amounts of CCR5 and GPR15 mRNA, and entry into these cells was not efficiently blocked by a small-molecule CCR5 antagonist, suggesting that sMagi cells express as-yet-unidentified entry cofactors. In summary, we found that a single amino acid at position 324 in the SIV Env V3 loop can modulate both the efficiency and the types of coreceptors engaged by Env and allow for CD4-independent fusion in some cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号