首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   3篇
  国内免费   2篇
  2022年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   9篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   8篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1983年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
1.
2.
A map of the barley genome consisting of 295 loci was constructed. These loci include 152 cDNA restriction fragment length polymorphism (RFLP), 114 genomic DNA RFLP, 14 random amplified polymorphic DNA (RAPD), five isozyme, two morphological, one disease resistance and seven specific amplicon polymorphism (SAP) markers. The RFLP-identified loci include 63 that were detected using cloned known function genes as probes. The map covers 1,250 centiMorgans (cM) with a 4.2 cM average distance between markers. The genetic lengths of the chromosomes range from 124 to 223 cM and are in approximate agreement with their physical lengths. The centromeres were localized to within a few markers on all of the barley chromosomes except chromosome 5. Telomeric regions were mapped for the short (plus) arms of chromosomes 1, 2 and 3 and the long (minus) arm of chromosomes 7.This research was also supported by other members of the NABGMP: K. Kasha, Department of Crop Science, University of Guelph, Guelph, Ontario, Canada NIG 2W1; W. Kim, Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9; A. Laroche, Agriculture Canada Research Station, P.O. Box 3000 Main, Lethbridge, Alberta, Canada,TU 4B1; S. Molnar, Plant Research Centre Agriculture Canada, Central Experimental farm, Ottawa, Ontario, Canada K1A 0C6; G. Scoles, Department of Crop Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N OWOThis research is part of the North American Barley Genome Mapping Project, R. A. Nilan and K. Kasha, Coordinator and Associate Coordinator, respectively Permanent address: Department of Plant Genetics, NI Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow  相似文献   
3.
R. W. Allard  Q. Zhang  MAS. Maroof    O. M. Muona 《Genetics》1992,131(4):957-969
Data from 311 selfed families isolated from four generations (F8, F13, F23, F45) of an experimental barley population were analyzed to determine patterns of change in character expression for seven quantitative traits, and in single-locus allelic frequencies, and multilocus genetic structure, for 16 Mendelian loci that code for discretely recognizable variants. The analyses showed that large changes in single-locus allelic frequencies and major reorganizations in multilocus genetic structure occurred in each of the generation-to-generation transitions examined. Although associations among a few traits persisted over generations, dynamic dissociations and reassociations occurred among several traits in each generation-transition period. Overall, the restructuring that occurred was characterized by gradual decreases in the number of clusters of associated traits and increases in the number of traits within each cluster. The observed changes in single-locus frequencies and in multilocus genetic structure were attributed to interplay among various evolutionary factors among which natural selection acting in a temporally heterogeneous environment was the guiding force.  相似文献   
4.
Twenty rDNA spacer-length variants (slvs) have been identified in barley. These slvs form a ladder in which each variant (with one exception) differs from its immediate neighbors by a 115-bp subrepeat. The 20 slvs are organized in two families, one forming an eight-step ladder (slvs 100-107) in the nucleolus organizer region (NOR) of chromosome 7 and the other a 12-step ladder (slvs 108a-118) in the NOR of chromosome 6. The eight shorter slvs (100-107) segregate and serve as markers of eight alleles of Mendelian locus Rrn2 and the 12 longer slvs (108a-118) segregate and serve as markers of 12 alleles of Mendelian locus Rrn1. Most barley plants (90%) are homozygous for two alleles, including one from each the 100-107 and the 108a-118 series. Two types of departures from this typical pattern of molecular and genetic organization were identified, one featuring compound alleles marked by two slvs of Rrn1 or of Rrn2, and the other featuring presence in Rrn1 of alleles normally found in Rrn2, and vice versa. The individual and joint effects on adaptedness of the rDNA alleles are discussed. It was concluded that selection acting on specific genotypes plays a major role in molding the strikingly different allelic and genotypic frequency distributions seen in populations of wild and cultivated barley from different ecogeographical regions.  相似文献   
5.
6.
Highly phagocytic macrophages line the marginal zone (MZ) of the spleen and the lymph node subcapsular sinus. Although these macrophages have been attributed with a variety of functions, including the uptake and clearance of blood and lymph-borne pathogens, little is known about the effector mechanisms they employ after pathogen uptake. Here, we have combined gene expression profiling and RNAi using a stromal macrophage cell line with in situ analysis of the leishmanicidal activity of marginal zone macrophages (MZM) and marginal metallophilic macrophages (MMM) in wild type and gene targeted mice. Our data demonstrate a critical role for interferon regulatory factor-7 (IRF-7) in regulating the killing of intracellular Leishmania donovani by these specialised splenic macrophage sub-populations. This study, therefore, identifies a new role for IRF-7 as a regulator of innate microbicidal activity against this, and perhaps other, non-viral intracellular pathogens. This study also highlights the importance of selecting appropriate macrophage populations when studying pathogen interactions with this functionally diverse lineage of cells.  相似文献   
7.

Background

Root system architecture is important for water acquisition and nutrient acquisition for all crops. In soybean breeding programs, wild soybean alleles have been used successfully to enhance yield and seed composition traits, but have never been investigated to improve root system architecture. Therefore, in this study, high-density single-feature polymorphic markers and simple sequence repeats were used to map quantitative trait loci (QTLs) governing root system architecture in an inter-specific soybean mapping population developed from a cross between Glycine max and Glycine soja.

Results

Wild and cultivated soybean both contributed alleles towards significant additive large effect QTLs on chromosome 6 and 7 for a longer total root length and root distribution, respectively. Epistatic effect QTLs were also identified for taproot length, average diameter, and root distribution. These root traits will influence the water and nutrient uptake in soybean. Two cell division-related genes (D type cyclin and auxin efflux carrier protein) with insertion/deletion variations might contribute to the shorter root phenotypes observed in G. soja compared with cultivated soybean. Based on the location of the QTLs and sequence information from a second G. soja accession, three genes (slow anion channel associated 1 like, Auxin responsive NEDD8-activating complex and peroxidase), each with a non-synonymous single nucleotide polymorphism mutation were identified, which may also contribute to changes in root architecture in the cultivated soybean. In addition, Apoptosis inhibitor 5-like on chromosome 7 and slow anion channel associated 1-like on chromosome 15 had epistatic interactions for taproot length QTLs in soybean.

Conclusion

Rare alleles from a G. soja accession are expected to enhance our understanding of the genetic components involved in root architecture traits, and could be combined to improve root system and drought adaptation in soybean.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1334-6) contains supplementary material, which is available to authorized users.  相似文献   
8.
A small open reading frame, termed 'pipo', is embedded in the P3 cistron of potyviruses. Currently, knowledge on pipo and its role(s) in the life cycle of potyviruses is limited. The P3 and helper-component proteinase (HC-Pro) cistrons of Soybean mosaic virus (SMV) harbour determinants affecting virulence on functionally immune Rsv1-genotype soybeans. Interestingly, a key virulence determinant of SMV on Rsv1-genotype soybeans (i.e. soybeans containing the Rsv1 resistance gene) that resides at polyprotein codon 947 overlaps both P3 and a pipo-encoded codon. This raises the question of whether PIPO or P3 is the virulence factor. To answer this question, the corresponding pipo of an avirulent and two virulent strains of SMV were studied by comparative genomics, followed by syntheses and analyses of site-directed mutants. Our data demonstrate that the virulence of SMV on Rsv1-genotype soybeans is affected by P3 and not the overlapping pipo-encoded protein.  相似文献   
9.
Low cellular uptake and poor nuclear transfer hamper the use of non-viral vectors in gene therapy. Addition of functional entities to plasmids using the Bioplex technology has the potential to improve the efficiency of transfer considerably. We have investigated the possibility of stabilizing sequence-specific binding of peptide nucleic acid (PNA) anchored functional peptides to plasmid DNA by hybridizing PNA and locked nucleic acid (LNA) oligomers as "openers" to partially overlapping sites on the opposite DNA strand. The PNA "opener" stabilized the binding of "linear" PNA anchors to mixed-base supercoiled DNA in saline. For higher stability under physiological conditions, bisPNA anchors were used. To reduce nonspecific interactions when hybridizing highly cationic constructs and to accommodate the need for increased amounts of bisPNA when the molecules are uncharged, or negatively charged, we used both PNA and LNA oligomers as "openers" to increase binding kinetics. To our knowledge, this is the first time that LNA has been used together with PNA to facilitate strand invasion. This procedure allows hybridization at reduced PNA-to-plasmid ratios, allowing greater than 80% hybridization even at ratios as low as 2:1. Using significantly lower amounts of PNA-peptides combined with shorter incubation times reduces unspecific binding and facilitates purification.  相似文献   
10.
Hayes AJ  Jeong SC  Gore MA  Yu YG  Buss GR  Tolin SA  Maroof MA 《Genetics》2004,166(1):493-503
The soybean Rsv1 gene for resistance to soybean mosaic virus (SMV; Potyvirus) has previously been described as a single-locus multi-allelic gene mapping to molecular linkage group (MLG) F. Various Rsv1 alleles condition different responses to the seven (G1-G7) described strains of SMV, including extreme resistance, localized and systemic necrosis, and mosaic symptoms. We describe the cloning of a cluster of NBS-LRR resistance gene candidates from MLG F of the virus-resistant soybean line PI96983 and demonstrate that multiple genes within this cluster interact to condition unique responses to SMV strains. In addition to cloning 3gG2, a strong candidate for the major Rsv1 resistance gene from PI96983, we describe various unique resistant and necrotic reactions coincident with the presence or absence of other members of this gene cluster. Responses of recombinant lines from a high-resolution mapping population of PI96983 (resistant) x Lee 68 (susceptible) demonstrate that more than one gene in this region of the PI96983 chromosome conditions resistance and/or necrosis to SMV. In addition, the soybean cultivars Marshall and Ogden, which carry other previously described Rsv1 alleles, are shown to possess the 3gG2 gene in a NBS-LRR gene cluster background distinct from PI96983. These observations suggest that two or more related non-TIR-NBS-LRR gene products are likely involved in the allelic response of several Rsv1-containing lines to SMV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号