首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   47篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   6篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   5篇
  1977年   5篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1970年   3篇
  1969年   1篇
  1968年   1篇
  1967年   4篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
1.
2.
Escherichia coli K-12 strain AB259 can be induced to form capsular polysaccharide (mucoid clones) by dl-p-fluorophenylalanine (FPA; 5 x 10(-6)m on agar plates at 37 C or 8 x 10(-5)m in liquid medium at 30 C). The change was shown to be phenotypic. An increase in enzymes probably involved in capsular polysaccharide synthesis [phosphomannose isomerase (3.3-fold), uridine diphosphate-d-galactose-4-epimerase (2.5-fold), and guanine diphosphate-l-fucose synthetase] was demonstrated as a result of growth in FPA. These increases appear sufficient to account for the increased synthesis of capsular polysaccharide due to growth in FPA. FPA-resistant derivatives of strain AB259 were obtained by selecting mutants on FPA-containing agar or by transducing in an altered phenylalanyl soluble ribonucleic acid synthetase that activates FPA poorly. Mucoid clones were formed by these strains only in the presence of 30 to 1,000 times as much FPA. Among these strains, there was a close correlation between incorporation of FPA-C(14) and induction of capsular polysaccharide synthesis. The results are thus consistent with the following model: FPA is incorporated into the protein product of the R(1) gene (repressor) and alters it sufficiently to allow derepression of several enzymes.  相似文献   
3.
A regulator gene mutation (capR) that causes increased synthesis of capsular polysaccharide and derepressed synthesis of several enzymes involved in polysaccharide synthesis also derepresses phosphomannose isomerase (PMI) synthesis. In contrast, a second mutation (capS, which maps separately from capR) that causes increased production of the same polysaccharide does not lead to increased synthesis of PMI (nor of several of the other enzymes involved in polysaccharide synthesis). Introduction of the capR9 allele by transduction or mutation of capR(+) to capR can change the phenotype of a mannose-negative nonmucoid strain to a mannose-positive mucoid phenotype. Thus, genotype capR(+)man-2 is mannose-negative and nonmucoid, but genotype capR9 man-2 is mannose positive and mucoid. Other interactions between these alleles in the synthesis of capsular polysaccharide are recorded.  相似文献   
4.
Summary capR (lon) mutants of Escherichia coli K-12 are mucoid on minimal agar because they produce large quantities of capsular polysaccharide. When such mutants are transformed to tetracycline resistance by plasmid pMC44, a hybrid plasmid that contains a 2 megadalton (Mdal) endonuclease EcoR1 fragment of E. coli K-12 DNA joined to the cloning vehicle-pSC101, capsular polysaccharide synthesis is inhibited and the transformed colonies exhibit a nonmucoid phenotype. Re-cloning of the 2 Mdal EcoR1 fragment onto plasmid pHA105, a min-colE1 plasmid, yielded plasmid pFM100 which also inhibited capsular polysaccharide synthesis in the capR mutants. A comparison of the polypeptides specified by both plasmids pFM100 and pMC44 in minicells demonstrated that seven polypeptide bands were specified by the 2 Mdal DNA, one of which was previously demonstrated to be outer membrane protein a; also known as 3b or M2 (40 kilodaltons, Kdal). Plasmid mutants no longer repressing capsular polysaccharide synthesis were either unable to specify the 40 K dal outer membrane protein a or were deficient in synthesis of 25 K dal and 14.5 K dal polypeptides specified by the 2 Mdal DNA fragment. Studies with a minicell-producing strain that also contained a capR mutation indicated that the capR gene product regulated processing of at least one normal protein, the precursor of outer membrane protein a.  相似文献   
5.
6.
A mutation in the lon (capR) gene of Escherichia coli K-12 results in overproduction of capsular polysaccharide and increased sensitivity to ultraviolet and ionizing radiations. The lon (capR) gene deoxyribonucleic acid was cloned from a new F′ factor. The new plasmids, designated pBZ201 and pBZ203, (i) contained an additional 8.2-megadalton (Md) EcoRI fragment that had the same mobility as one of the EcoRI fragments of the F′, and (ii) conferred repression of capsular polysaccharide synthesis and repression of sensitivity to ultraviolet radiation in a bacterial transformation experiment with capR mutant recipient strains. A capR9 mutant plasmid, pBZ201M9, was also isolated and conferred expression of mucoidy and ultraviolet sensitivity to a capR+ (lon+) strain, indicating that the capR9 allele was dominant. Plasmids pBZ201M80, pBZ201M9-INSA, and pBZ201M9-INSB were characterized by transformation as containing recessive capR mutant alleles. Heteroduplex analyses and agarose gel electrophoresis of restriction endonuclease digests of plasmid DNA preparations revealed that (i) pBZ201M9-INSA and pBZ201M9-INSB each contains a 0.5-Md insertion (probably IS1) in the cloned DNA fragment at the same site, and (ii) pBZ201 and pBZ203, both capR+ plasmids, contain the same 8.2-Md fragment cloned in opposite orientations with respect to the cloning vehicle, pSC101. Plasmid-specified polypeptides were determined by using strain CSR603 maxicells containing each plasmid. Two new polypeptides were coded by the lon+ (capR+) 8.2-Md DNA fragment: Z1, 94 kilodaltons (94K), and Z2, 67K. The maxicells containing recessive capR mutant plasmids were deficient only in synthesis of the 94K polypeptide, and the dominant (capR9) mutant plasmid specified 5 to 10 times more of the 94K polypeptide than the maxicells containing the capR+ plasmid. Other data indicated that the capR9-specified “94K polypeptide” was not identical to the capR+-specified “94K polypeptide.” Thus the altered mutant polypeptide was synthesized in increased quantities, suggesting a defective mode of autogenous regulation for the capR9 polypeptide and effective autogenous regulation of the capR+ polypeptide.  相似文献   
7.
capR (lon) mutants of Escherichia coli K-12 are mucoid and sensitive to ultraviolet (UV) and X-ray radiation as well as to nitrofurantoin. The mutants form filaments after exposure to these agents. capR mutants are also conditionally lethal since they die when plated on complex medium even without UV treatment; this phenomenon is designated "complex medium-induced killing". Furthermore, capR mutants are poorly lysogenized by bacteriophage lambda. Second-site revertants were isolated by plating on media containing nitrofurantoin. All 17 of the independent revertants studied were still mucoid but resistant to UV radiation. Sixteen of the 17 revertants contained a mutation, sulA, that cotransduced with pyrD (21 min). A second locus, sulB, was also found that cotransduced with leu (2 min). Studies with partial diploids (F'pyrD+ sulA+/pyrD36 sulA17 capR9 (lon) demonstrated that sulA+ is dominant to sulA; thus the indicated partial diploid is UV sensitive, whereas the haploid parent is UV resistant. Furthermore, two other phenotypic traits of capR (lon) mutants were reversed by the sul mutation:complex medium-induced killing and the inability of lambda phage to efficiently lysogenize capR strains. On the basis of these and other results, the following model is suggested to explain capR (lon) and sul gene interactions. capR (lon) is a regulator gene for the structural genes sulA+ and sulB+. Depression of both sul operons results in UV sensitivity and decreased ability of lambda to lysogenize, whereas inactivation of either sul+ protein by mutation to sul prevents these phenomena.  相似文献   
8.
9.
A new oxazole scaffold showing great promise in HIV-1 inhibition has been discovered by cell-based screening of an in-house library and scaffold modification. Follow-up SAR study focusing on the 5-aryl substituent of the oxazole core has identified 4k (EC50 = 0.42 μM, TI = 50) as a potent inhibitor. However, the analogues suffered from poor aqueous solubility. To address this issue, we have developed broadly applicable potential prodrugs of indazoles. Among them, N-acyloxymethyl analogue 11b displayed promising results (i.e., increased aqueous solubility and susceptibility to enzymatic hydrolysis). Further studies are warranted to fully evaluate the analogues as the potential prodrugs with improved physiochemical and PK properties  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号