首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   9篇
  2023年   2篇
  2022年   2篇
  2021年   8篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   11篇
  2014年   9篇
  2013年   10篇
  2012年   18篇
  2011年   19篇
  2010年   7篇
  2009年   9篇
  2008年   12篇
  2007年   14篇
  2006年   9篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   6篇
  1998年   1篇
  1987年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
1.
The paper presents data on variations in the level of serous immunoglobulins (Ig M and Ig G classes), immunocompetent T- and B-lymphocytes in lymphoid organs (spleen, mesenteric, portal and mediastinal lymph nodes) and specific antiparasitic antibodies in guinea pigs during the dynamics of experimental ascariasis.  相似文献   
2.
Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we analyzed roles of the less characterised Arabidopsis PIN6 auxin transporter. PIN6 is auxin-inducible and is expressed during multiple auxin–regulated developmental processes. Loss of pin6 function interfered with primary root growth and lateral root development. Misexpression of PIN6 affected auxin transport and interfered with auxin homeostasis in other growth processes such as shoot apical dominance, lateral root primordia development, adventitious root formation, root hair outgrowth and root waving. These changes in auxin-regulated growth correlated with a reduction in total auxin transport as well as with an altered activity of DR5-GUS auxin response reporter. Overall, the data indicate that PIN6 regulates auxin homeostasis during plant development.  相似文献   
3.
4.
5.
Anthropogenic climate change has created myriad stressors that threaten to cause local extinctions if wild populations fail to adapt to novel conditions. We studied individual and population‐level fitness costs of a climate change‐induced stressor: camouflage mismatch in seasonally colour molting species confronting decreasing snow cover duration. Based on field measurements of radiocollared snowshoe hares, we found strong selection on coat colour molt phenology, such that animals mismatched with the colour of their background experienced weekly survival decreases up to 7%. In the absence of adaptive response, we show that these mortality costs would result in strong population‐level declines by the end of the century. However, natural selection acting on wide individual variation in molt phenology might enable evolutionary adaptation to camouflage mismatch. We conclude that evolutionary rescue will be critical for hares and other colour molting species to keep up with climate change.  相似文献   
6.
The oxygen sensor histidine kinase AfGcHK from the bacterium Anaeromyxobacter sp. Fw 109‐5 forms a two‐component signal transduction system together with its cognate response regulator (RR). The binding of oxygen to the heme iron of its N‐terminal sensor domain causes the C‐terminal kinase domain of AfGcHK to autophosphorylate at His183 and then transfer this phosphate to Asp52 or Asp169 of the RR protein. Analytical ultracentrifugation revealed that AfGcHK and the RR protein form a complex with 2:1 stoichiometry. Hydrogen‐deuterium exchange coupled to mass spectrometry (HDX‐MS) suggested that the most flexible part of the whole AfGcHK protein is a loop that connects the two domains and that the heme distal side of AfGcHK, which is responsible for oxygen binding, is the only flexible part of the sensor domain. HDX‐MS studies on the AfGcHK:RR complex also showed that the N‐side of the H9 helix in the dimerization domain of the AfGcHK kinase domain interacts with the helix H1 and the β‐strand B2 area of the RR protein's Rec1 domain, and that the C‐side of the H8 helix region in the dimerization domain of the AfGcHK protein interacts mostly with the helix H5 and β‐strand B6 area of the Rec1 domain. The Rec1 domain containing the phosphorylable Asp52 of the RR protein probably has a significantly higher affinity for AfGcHK than the Rec2 domain. We speculate that phosphorylation at Asp52 changes the overall structure of RR such that the Rec2 area containing the second phosphorylation site (Asp169) can also interact with AfGcHK. Proteins 2016; 84:1375–1389. © 2016 Wiley Periodicals, Inc.  相似文献   
7.
8.
9.
10.
The technique of fluorescent two-dimensional (2D) difference gel electrophoresis for differential protein expression analysis has been evaluated using a model breast cancer cell system of ErbB-2 overexpression. Labeling of paired cell lysate samples with N-hydroxy succinimidyl ester-derivatives of fluorescent Cy3 and Cy5 dyes for separation on the same 2D gel enabled quantitative, sensitive, and reproducible differential expression analysis of the cell lines. SyproRuby staining was shown to be a highly sensitive and 2D difference gel electrophoresis-compatible method for post-electrophoretic visualization of proteins, which could then be picked and identified by matrix-assisted laser-desorption ionization mass spectroscopy. Indeed, from these experiments, we have identified multiple proteins that are likely to be involved in ErbB-2-mediated transformation. A triple dye labeling methodology was used to identify proteins differentially expressed in the cell system over a time course of growth factor stimulation. A Cy2-labeled pool of samples was used as a standard with all Cy3- and Cy5-labeled sample pairs to facilitate cross-gel quantitative analysis. DeCyder (Amersham Biosciences, Inc.) software was used to distinguish clear statistical differences in protein expression over time and between the cell lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号