首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   19篇
  358篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   5篇
  2015年   21篇
  2014年   13篇
  2013年   15篇
  2012年   29篇
  2011年   18篇
  2010年   14篇
  2009年   10篇
  2008年   18篇
  2007年   18篇
  2006年   12篇
  2005年   18篇
  2004年   23篇
  2003年   10篇
  2002年   16篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   4篇
  1997年   6篇
  1996年   8篇
  1995年   6篇
  1994年   1篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1988年   5篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1976年   2篇
  1973年   5篇
  1971年   1篇
  1965年   1篇
  1956年   1篇
排序方式: 共有358条查询结果,搜索用时 15 毫秒
1.
Growth of the hopanoid-producing bacterium Zymomonas mobilis was inhibited at low concentrations of the cationic detergent octadecyltrimethylammoniumchloride (OTAC). A relationship between sensitivity of Zymomonas mobilis to OTAC, presence of hopanoids and ethanol tolerance was postulated. Mutants resistant to OTAC were isolated from strains ZM1 and ZM4. They did not present any alteration of the hopanoid content and their squalene cyclases showed the same sensitity to OTAC as the parent enzymes. Resistance to OTAC paralleled pleiotropic effects including, enhanced accessibility of the membrane-bound alkaline phosphatase, important release of proteins from cells by Tris/HCl treatment, increased resistance to antibiotics and increased sensitivity to ethanol. In addition, OTACR mutants were also characterized by the synthesis or the overproduction of an outer membrane protein (F53) not detected on 2D-PAGE maps of parent strains and by a normal heat shock response. The role of hopanoids, heat shock proteins, protein F53 and membrane organization in ethanol tolerance is discussed.Abbreviations OTAC octadecyltrimethylammoniumchloride - SLS sodium lauryl sarcosinate  相似文献   
2.
Short chain flavour esters synthesis by microbial lipases   总被引:6,自引:0,他引:6  
Summary The peparative synthesis of 35 short chain flavour esters by lipases fromMucor miehi, Aspergillus sp.,Candida rugosa andRhizopus arrhizus was investigated in organic media. Acetic, propionic, butyric, valeric and caproic acids, as well as methanol, ethanol, butanol, i-pentanol, hexanol, citronellol and geraniol were used as substrates. Most of the esters were synthesized in good yield by at least one of the lipase preparations tested. Different conversion yields were observed according to the lipase specificity toward the acid or the alcohol moiety of the ester. Methyl- and ethyl acetates were also produced by changing the organic solvent. Enzymatic catalysis in organic solvent is thought to be a valuable method for preparative synthesis of flavour esters.  相似文献   
3.
Immobilized growing cells of Zymomonas mobilis were found to ferment rapidly and efficiently media containing 100 g/L fructose in a continuous reactor. A volumetric ethanol productivity of 94.8 g/L h was achieved at a substrate conversion of 75.5%. With 97% conversion of substrate the productivity was 28.4 g/L h. At fructose concentrations of 150 and 200 g/L substrate and product inhibitions limited the performance of the reactor. Ethanol production was constant over a period of 55 days.  相似文献   
4.
Summary Ethanol production from the inulin of Jerusalem artichoke byZ. mobilis was studied in batch and continuous fermentations. Both acid or enzymatic hydrolysis were used. In continuous cultures enzymatic hydrolysis showed better results. Ethanol productivities of 17.7 and 29.0 g/l.h were obtained at output concentrationsca 35 g/l (% of conversion 99 and 83; ethanol yield 0.45 g/g). The hydrolysed juice could be used without any nutrient addition.  相似文献   
5.
6.
An enrichment method using d-cycloserine was designed for the isolation of spontaneous mutants of Zymomonas mobilis deficient in glucose or fructose utilization. The mutants could easily be isolated since they represented 80 to 90% of the population after two and three enrichment cycles. Glucokinase and fructokinase activities in the mutants were affected.  相似文献   
7.
The effect of hypothyroidism on the lipid composition of synaptosomes, density and affinity of muscarinic receptor sites, and acetylcholinesterase activity in the cerebral cortex of young and aged rats was investigated. The animals were made hypothyroid by adding 0.05% propyl-2-thiouracil to their drinking water for four weeks. This pathological state induced an increase in the relative percentage of sphingomyelin in young rats. In aged rats hypothyroidism induced a decrease of sphingomyelin and glycerophosphocholine and an increase of cholesterol. The effect of hypothyroid state on cerebral cortex resulted in an increase of acethylcholinesterase activity both in young and aged rats and was also reflected in an increase of density of M1-AChRs but only in the former.  相似文献   
8.
The extent of processing of N-linked oligosaccharides and thesialylation of the target cell membranes has been positivelycorrelated with resistance to lysis mediated by NK cells, buta conclusive evidence has never been reached. Colon cancer tissuesexpress an increased activity of ß-ga-lactoside  相似文献   
9.
We report the identification and characterization of ERS-24 (Endoplasmic Reticulum SNARE of 24 kD), a new mammalian v-SNARE implicated in vesicular transport between the ER and the Golgi. ERS24 is incorporated into 20S docking and fusion particles and disassembles from this complex in an ATP-dependent manner. ERS-24 has significant sequence homology to Sec22p, a v-SNARE in Saccharomyces cerevisiae required for transport between the ER and the Golgi. ERS-24 is localized to the ER and to the Golgi, and it is enriched in transport vesicles associated with these organelles.Newly formed transport vesicles have to be selectively targeted to their correct destinations, implying the existence of a set of compartment-specific proteins acting as unique receptor–ligand pairs. Such proteins have now been identified (Söllner et al., 1993a ; Rothman, 1994): one partner efficiently packaged into vesicles, termed a v-SNARE,1 and the other mainly localized to the target compartment, a t-SNARE. Cognate pairs of v- and t-SNAREs, capable of binding each other specifically, have been identified for the ER–Golgi transport step (Lian and Ferro-Novick, 1993; Søgaard et al., 1994), the Golgi–plasma membrane transport step (Aalto et al., 1993; Protopopov et al., 1993; Brennwald et al., 1994) in Saccharomyces cerevisiae, and regulated exocytosis in neuronal synapses (Söllner et al., 1993a ; for reviews see Scheller, 1995; Südhof, 1995). Additional components, like p115, rab proteins, and sec1 proteins, appear to regulate vesicle docking by controlling the assembly of SNARE complexes (Søgaard et al., 1994; Lian et al., 1994; Sapperstein et al., 1996; Hata et al., 1993; Pevsner et al., 1994).In contrast with vesicle docking, which requires compartment-specific components, the fusion of the two lipid bilayers uses a more general machinery derived, at least in part, from the cytosol (Rothman, 1994), which includes an ATPase, the N-ethylmaleimide–sensitive fusion protein (NSF) (Block et al., 1988; Malhotra et al., 1988), and soluble NSF attachment proteins (SNAPs) (Clary et al., 1990; Clary and Rothman, 1990; Whiteheart et al., 1993). Only the assembled v–t-SNARE complex provides high affinity sites for the consecutive binding of three SNAPs (Söllner et al., 1993b ; Hayashi et al., 1995) and NSF. When NSF is inactivated in vivo, v–t-SNARE complexes accumulate, confirming that NSF is needed for fusion after stable docking (Søgaard et al., 1994).The complex of SNAREs, SNAPs, and NSF can be isolated from detergent extracts of cellular membranes in the presence of ATPγS, or in the presence of ATP but in the absence of Mg2+, and sediments at ∼20 Svedberg (20S particle) (Wilson et al., 1992). In the presence of MgATP, the ATPase of NSF disassembles the v–t-SNARE complex and also releases SNAPs. It seems likely that this step somehow initiates fusion.To better understand vesicle flow patterns within cells, it is clearly of interest to identify new SNARE proteins. Presently, the most complete inventory is in yeast, but immunolocalization is difficult in yeast compared with animal cells, and many steps in protein transport have been reconstituted in animal extracts (Rothman, 1992) that have not yet been developed in yeast. Therefore, it is important to create an inventory of SNARE proteins in animal cells. The most unambiguous and direct method for isolating new SNAREs is to exploit their ability to assemble together with SNAPs and NSF into 20S particles and to disassemble into subunits when NSF hydrolyzes ATP. Similar approaches have already been successfully used to isolate new SNAREs implicated in ER to Golgi (Søgaard et al., 1994) and intra-Golgi transport (Nagahama et al., 1996), in addition to the original discovery of SNAREs in the context of neurotransmission (Söllner et al., 1993a ).Using this method, we now report the isolation and detailed characterization of ERS-24 (Endoplasmic Reticulum SNARE of 24 kD), a new mammalian v-SNARE that is localized to the ER and Golgi. ERS-24 is found in transport vesicles associated with the transitional areas of the ER and with the rims of Golgi cisternae, suggesting a role for ERS-24 in vesicular transport between these two compartments.  相似文献   
10.
The effect of environmental parameters on the growth and the tyrosine phenol-lyase content of Erwinia herbicola was investigated. On mineral medium containing glycerol, l-tyrosine increased the enzyme content 23-fold. When the l-tyrosine was also the carbon source, bacterial growth was 300 times greater than the basal level. On a rich medium, tyrosine phenol-lyase production was strongly dependent on pH and aeration. Catabolite repression and induction both probably control enzyme content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号