首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  21篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  1997年   1篇
  1996年   1篇
  1990年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Upward nutrient fluxes at the sediment-water interface were studied in a mussel farming zone (Carteau, Gulf of Fos, France) in order to estimate the impact of organic matter input from biodeposition. Nitrate, nitrite, ammonia, silicate, phosphate and oxygen were measured. Fluxes were estimated by means of polyacrylate benthic chambers placed at sites located under (UM) and outside (OM) the rope hanging structures. Transformation of biodeposited organic matter increases phosphate, silicate and ammonia fluxes. No variation in nitrite fluxes could be detected and only minor differences were observed in nitrate and the oxygen production/consumption equilibrium at the two stations. Phosphate and silicate fluxes, which were always higher at the UM than at the OM site, decreased from spring to winter. Ammonia fluxes were very high under mussel cultures in May and September and lower in November. The fact that ammonia flux was always higher at the UM than at the OM sites might be explained by degradation of mussel biodeposit, as well as by benthic macrafauna excretion. Discrepancies between fluxes of the nutrients studied at the UM and OM sites increased as organic particulate matter in the water column decreased. Variations of oxygen flux followed a different pattern, since they were correlated with presence and abundance of photosynthetic microphytes on the bottom and in the water. Bottom respiration exceeded production of oxygen only in May 1988 at the UM station.As it now stands, biodeposit input into the sediment under mussel ropes does not affect the ecosystem, although the flow of nutrients towards the water column is higher than in other areas.  相似文献   
2.
3.
4.
Little is known about factors that affect the indigenous populations of rhizobia in soils. We compared the abundance, diversity and genetic structure of Rhizobium leguminosarum biovar viciae populations in soils under different crop managements, i.e., wheat and maize monocultures, crop rotation, and permanent grassland. Rhizobial populations were sampled from nodules of pea- or vetch plants grown in soils collected at three geographically distant sites in France, each site comprising a plot under long-term maize monoculture. Molecular characterization of isolates was performed by PCR-restriction fragment length polymorphism of 16S-23S rDNA intergenic spacer as a neutral marker of the genomic background, and PCR-restriction fragment length 0polymorphism of a nodulation gene region, nodD, as a marker of the symbiotic function. The diversity, estimated by richness in types and Simpson's index, was consistently and remarkably lower in soils under maize monoculture than under the other soil managements at the three sites, except for the permanent grassland. The highest level of diversity was found under wheat monoculture. Nucleotide sequences of the main rDNA intergenic spacer types were determined and sequence analysis showed that the prevalent genotypes in the three maize fields were closely related. These results suggest that long-term maize monoculturing decreased the diversity of R. leguminosarum biovar viciae populations and favored a specific subgroup of genotypes, but the size of these populations was generally preserved. We also observed a shift in the distribution of the symbiotic genotypes within the populations under maize monoculture, but the diversity of the symbiotic genotypes was less affected than that of IGS types. The possible effect of such changes on biological nitrogen fixation remains unknown and this requires further investigation.  相似文献   
5.
The aleurone tissue of cereal grains, nutritionally rich in minerals and vitamins, is an important target for the improvement of cereals. Inheritance of the thickness and the number of cell layers in barley aleurone was studied on the F2–F3 progeny of an Erhard Frederichen × Criolla Negra cross in which the parental lines have three or two aleurone layers, respectively. F3 grain was sampled from each F2 plant and 96.8% of the entire F3 grain population was classified as being either the 2- or 3-layer type. Using microsatellite, single nucleotide polymorphism (SNP) and morphological markers on 190 F2 plants, a linkage map was built. Three quantitative trait loci (QTLs) affecting aleurone traits were revealed on chromosome 5H (max. LOD = 5.83) and chromosome 7H (max. LOD = 4.45) by interval mapping, and on chromosome 2H by marker analysis with an unmapped marker. These QTLs were consistent with genetic sub-models involving either 2-cell type dominance for 7H and 2H, or putative partial dominance for 5H where 2-cell-layer dominance and additivity gave similar LODs. The number of aleurone cell layers and aleurone thickness were strongly correlated and QTL results for these traits were alike. An SNP marker of sal1, an orthologue of the maize multilayer aleurone gene was mapped to the 7HL chromosome arm. However, the 7H QTL did not co-locate with the barley sal1 SNP, suggesting that an additional gene is involved in determining aleurone traits. These new mapping data allow comparisons to be made with related studies.  相似文献   
6.
Populations of Rhizobium leguminosarum biovar viciae were sampled from two bulk soils, rhizosphere, and nodules of host legumes, fava bean (Vicia faba) and pea (Pisum sativum) grown in the same soils. Additional populations nodulating peas, fava beans, and vetches (Vicia sativa) grown in other soils and fava bean-nodulating strains from various geographic sites were also analyzed. The rhizobia were characterized by repetitive extragenomic palindromic-PCR fingerprinting and/or PCR-restriction fragment length polymorphism (RFLP) of 16S-23S ribosomal DNA intergenic spacers as markers of the genomic background and PCR-RFLP of a nodulation gene region, nodD, as a marker of the symbiotic component of the genome. Pairwise comparisons showed differences among the genetic structures of the bulk soil, rhizosphere, and nodule populations and in the degree of host specificity within the Vicieae cross-inoculation group. With fava bean, the symbiotic genotype appeared to be the preponderant determinant of the success in nodule occupancy of rhizobial genotypes independently of the associated genomic background, the plant genotype, and the soil sampled. The interaction between one particular rhizobial symbiotic genotype and fava bean seems to be highly specific for nodulation and linked to the efficiency of nitrogen fixation. By contrast with bulk soil and fava bean-nodulating populations, the analysis of pea-nodulating populations showed preferential associations between genomic backgrounds and symbiotic genotypes. Both components of the rhizobial genome may influence competitiveness for nodulation of pea, and rhizosphere colonization may be a decisive step in competition for nodule occupancy.  相似文献   
7.
8.
9.
10.
Losser, Marie-Reine, Catherine Bernard, Jean-Louis Beaudeux,Christophe Pison, and Didier Payen. Glucose modulates hemodynamic,metabolic, and inflammatory responses to lipopolysaccharide in rabbits.J. Appl. Physiol. 83(5):1566-1574, 1997.Glucose is important for vascular andimmunocompetent cell functions. We hypothesized that modifications inglucose metabolism (normal feeding, 24-h fasting, glucose loading) mayinfluence the hemodynamic, metabolic, and inflammatory responses tolipopolysaccharide administration (LPS; 600 µg/kg iv) in rabbits.Aortic (ABFV), hepatic artery (HABFV), and portal vein blood flowvelocities (PVBFV) (pulsed Doppler), plasma tumor necrosis factor (TNF)and nitrites were measured. Fasting depleted hepatic glycogen content,and intraportal glucose load (2 g/kg) partially restored it. LPSinduced a similar hypotension (20%,P < 0.05) in three groups ofanimals. In fed animals, systemic vasoconstriction occured with lowABFV and PVBFV (40%, P < 0.05), together with lactacidemia and hyperglycemia. In fasted animals,ABFV and PVBFV were maintained, without metabolic acidosis orhyperglycemia. Glucose loading induced hemodynamic and metabolicpatterns comparable to those observed in fed animals, althoughsignificantly more severe. TNF release was amplified fourfold byglucose loading, with no impact on nitrite levels. In conclusion,glucose metabolism interferes with hemodynamic, metabolic, andinflammatory responses to LPS.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号