首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   8篇
  2023年   1篇
  2022年   1篇
  2018年   4篇
  2017年   1篇
  2016年   6篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   8篇
  2011年   5篇
  2010年   4篇
  2009年   10篇
  2008年   10篇
  2007年   14篇
  2006年   9篇
  2005年   9篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
  1973年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
1.
Reciprocal translocations (rcp) are among the most common constitutional chromosomal aberrations in man. Using a European database of 1574 families carrying autosomal rcp, a cartographic study was done on the breakpoints involved. The breakpoints are non-randomly distributed along the different chromosomes, indicating “hot spots”. Breakpoints of rcp that result in descendants that are unbalanced chromosomally at birth are more frequent in a distal position on chromosomal arms, and 65% of them are localised in R-bands. Among the R-bands, bands rich in GC islands and poor in Alu repetitive sequences are more frequently the site of breakpoints, as well as bands that include a fragile site. This result suggests that the variation in degree of methylation in GC islands could be involved in chromosomal breakage and hence in chromosomal rearrangements. Received: 10 April 1995 / Revised: 1 July 1995  相似文献   
2.
Two methods of prediction for the risk of unbalance at birth were tested on a large data base of reciprocal translocation (1376 families): the pachyten diagram predictive method (PDPmethod) and the discriminant method (Dmethod). These method succeeded in correctly predicting the segregation mode in 66% of the data for the PDPmethod and in 80% of the data for the Dmethod. The quality of chromosome material (in particular R bands) must be taken into account for more accurate prediction. Some difficulties still exist in predicting the 31 tertiary segregation mode, which can frequently be incorrectly classified as the adjacent 1 mode.  相似文献   
3.
4.
Four aromatic bromo compounds have been isolated from the ethanolic extract of Rytiphlea tinctoria after treatment with diazomethane: 2,4-dibromo-1,3,5-trimethoxy-benzene,5,6,3′,5′-tetrabromo-3,4,2′,4′,6′-pentamethoxydiphenylmethane, 5,6-dibromo-3,4-dimethoxy-benzyl alcohol and its ethyl ether. In addition to sterols, amino acids, this extract also contains quinonoid bromo-pigments which could play a rôle in photosensitisation of chlorophylls, a rôle normally taken by the phycobilins, in other Rhodophyceae.  相似文献   
5.
Changes in soil nutrient availability during long‐term ecosystem development influence the relative abundances of plant species with different nutrient‐acquisition strategies. These changes in strategies are observed at the community level, but whether they also occur within individual species remains unknown. Plant species forming multiple root symbioses with arbuscular mycorrhizal (AM) fungi, ectomycorrhizal (ECM) fungi, and nitrogen‐(N) fixing microorganisms provide valuable model systems to examine edaphic controls on symbioses related to nutrient acquisition, while simultaneously controlling for plant host identity. We grew two co‐occurring species, Acacia rostellifera (N2‐fixing and dual AM and ECM symbioses) and Melaleuca systena (AM and ECM dual symbioses), in three soils of contrasting ages (c. 0.1, 1, and 120 ka) collected along a long‐term dune chronosequence in southwestern Australia. The soils differ in the type and strength of nutrient limitation, with primary productivity being limited by N (0.1 ka), co‐limited by N and phosphorus (P) (1 ka), and by P (120 ka). We hypothesized that (i) within‐species root colonization shifts from AM to ECM with increasing soil age, and that (ii) nodulation declines with increasing soil age, reflecting the shift from N to P limitation along the chronosequence. In both species, we observed a shift from AM to ECM root colonization with increasing soil age. In addition, nodulation in A. rostellifera declined with increasing soil age, consistent with a shift from N to P limitation. Shifts from AM to ECM root colonization reflect strengthening P limitation and an increasing proportion of total soil P in organic forms in older soils. This might occur because ECM fungi can access organic P via extracellular phosphatases, while AM fungi do not use organic P. Our results show that plants can shift their resource allocation to different root symbionts depending on nutrient availability during ecosystem development.  相似文献   
6.

Background

Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence.

Scope

We surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants’ defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N2-fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis.

Conclusions

The absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils.
  相似文献   
7.
8.
9.
In this study, we address the question of the cross-talk between two chemokines that are cosecreted during inflammation, namely monocyte chemoattractant protein-1 (MCP-1) and soluble fractalkine (s-FKN), toward monocyte migration. We found that s-FKN fails to induce MonoMac6 cell migration per se. Interestingly, this chemokine antagonizes transendothelial migration and chemotaxis of MonoMac6 cells and freshly isolated human monocytes induced by MCP-1, indicating a direct effect of s-FKN on monocytic cells. In this study, we found that stress-activated protein kinase (SAPK)1/c-Jun N-terminal kinase 1 and SAPK2/p38 are involved in the control of MCP-1-induced MonoMac6 cell migration. We demonstrated that s-FKN abrogates the MCP-1-induced SAPK2/p38 activation as well as the upstream Pyk2 activity. Furthermore, we observed that s-FKN also inhibits the activity of a major matrix metalloproteinase (MMP), namely MMP-2. Taken collectively, our results indicate that the s-FKN antagonizes the chemoattractant effect of MCP-1 on monocytes, likely by inhibiting crucial signaling pathways, like SAPK2/p38 and MMP-2 activities.  相似文献   
10.
The acceptor specificities of ST3Gal III, ST3Gal IV, ST6Gal I and ST6Gal II were investigated using a panel of beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->2)-alpha-D-Manp-(1-->O)(CH(2))(7)CH(3) analogues. Modifications introduced at either C2, C3, C4, C5, or C6 of terminal D-Gal, as well as N-propionylation instead of N-acetylation of subterminal D-GlcN were tested for their influence on the alpha-2,3- and alpha-2,6-sialyltransferase acceptor activities. Both ST3Gal enzymes displayed the same narrow acceptor specificity, and only accept reduction of the Gal C2 hydroxyl function. The ST6Gal enzymes, however, do not have the same acceptor specificity. ST6Gal II seems less tolerant towards modifications at Gal C3 and C4 than ST6Gal I, and prefers beta-D-GalpNAc-(1-->4)-beta-D-GlcpNAc (LacdiNAc) as an acceptor substrate, as shown by replacing the Gal C2 hydroxyl group with an N-acetyl function. Finally, a particularly striking feature of all tested sialyltransferases is the activating effect of replacing the N-acetyl function of subterminal GlcNAc by an N-propionyl function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号