首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11430篇
  免费   1078篇
  国内免费   4篇
  2023年   61篇
  2022年   92篇
  2021年   178篇
  2020年   168篇
  2019年   198篇
  2018年   243篇
  2017年   261篇
  2016年   391篇
  2015年   606篇
  2014年   622篇
  2013年   743篇
  2012年   873篇
  2011年   773篇
  2010年   597篇
  2009年   462篇
  2008年   620篇
  2007年   553篇
  2006年   492篇
  2005年   516篇
  2004年   509篇
  2003年   480篇
  2002年   449篇
  2001年   190篇
  2000年   153篇
  1999年   157篇
  1998年   94篇
  1997年   79篇
  1996年   95篇
  1995年   76篇
  1994年   60篇
  1993年   64篇
  1992年   108篇
  1991年   103篇
  1990年   89篇
  1989年   77篇
  1988年   71篇
  1987年   66篇
  1986年   85篇
  1984年   66篇
  1983年   47篇
  1982年   53篇
  1981年   54篇
  1980年   45篇
  1979年   52篇
  1978年   48篇
  1977年   44篇
  1976年   44篇
  1975年   54篇
  1973年   44篇
  1971年   46篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.  相似文献   
3.
The Na‐ion battery is recognized as a possible alternative to the Li‐ion battery for applications where power and cost override energy density performance. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design Na‐based electrolytes. Here, the discovery of a Na‐based electrolyte formulation is reported which enlists four additives (vinylene carbonate, succinonitrile, 1,3‐propane sultone, and sodium difluoro(oxalate)borate) in proper quantities that synergistically combine their positive attributes to enable a stable solid electrolyte interphase at both negative and positive electrodes surface at 55 °C. Moreover, the role of each additive that consists in producing specific NaF coatings, thin elastomers, sulfate‐based deposits, and so on via combined impedance and X‐ray photoelectron spectroscopy is rationalized. It is demonstrated that empirical electrolyte design rules previously established for Li‐ion technology together with theoretical guidance is vital in the quest for better Na‐based electrolytes that can be extended to other chemistries. Overall, this finding, which is implemented to 18 650 cells, widens the route to the rapid development of the Na‐ion technology based on Na3V2(PO4)2F3/C chemistry.  相似文献   
4.
The binding of pentaammineruthenium (III) to ribonuclease A and B both free and complexed with d(pA)4 has been examined in the crystalline state through the application of X-ray diffraction and difference Fourier techniques. In crystals of native RNase B, the reagent was observed to have many binding sites, some entirely electrostatic in nature and others consistent with coordination to histidine residues. The primary histidine in the latter case was 105 with 119 also partially substituted. In crystals of RNase A+d(pA)4 complex only a single, extremely strong site of substitution was observed, and this was 2.4 Å from the native position of the imidazole ring of histidine 105. Thus, the results of these X-ray diffraction studies appear to be quite consistent with the findings of earlier NMR studies and with the results obtained in crystals of the gene 5 DNA binding protein.  相似文献   
5.
In the American lobster (Homarus americanus) the biogenic amines serotonin and octopamine appear to play important and opposite roles in the regulation of aggressive behavior, in the establishment and/or maintenance of dominant and subordinate behavioral states and in the modulation of the associated postural stances and escape responses. The octopamine-containing neurosecretory neurons in the thoracic regions of the lobster ventral nerve cord fall into two morphological subgroups, the root octopamine cells, a classical neurohemal group with release regions along second thoracic roots, and the claw octopamine cells, a group that selectively innervates the claws. Cells of both subgroups have additional sets of endings within neuropil regions of ganglia of the ventral nerve cord. Octopamine neurosecretory neurons generally are silent, but when spontaneously active or when activated, they show large overshooting action potentials with prominent after-hyperpolarizations. Autoinhibition after high-frequency firing, which is also seen in other crustacean neurosecretory cells, is readily apparent in these cells. The cells show no spontaneous synaptic activity, but appear to be excited by a unitary source. Stimulation of lateral or medial giant axons, which excite serotonergic cells yielded no response in octopaminergic neurosecretory cells and no evidence for direct interactions between pairs of octopamine neurons, or between the octopaminergic and the serotonergic sets of neurosecretory neurons was found.  相似文献   
6.
We investigated the mechanisms implicated in beta-cell mass reduction observed during late fetal and early postnatal malnutrition in the rat. Beta-cell regeneration, including proliferation and neogenesis, was studied after neonatal beta-cell destruction by streptozotocin (STZ). STZ was injected at birth and maternal food restriction was continued until weaning. Beta-cell mass, proliferation, and islet number were quantified by morphometrical measurements on pancreatic sections in STZ-injected normal (C-STZ) and malnourished (R-STZ) rats, with noninjected C and R rats as controls. At day 4, only 20% of the beta cell-mass remained in C-STZ rats. It regenerated to 50% that of noninjected controls, mainly through active neogenesis, as shown by the entire recovery of islet number/cm(2), and also through moderately increased beta-cell proliferation. In contrast, beta-cell mass from R-STZ animals poorly regenerated, despite a dramatic increase of beta-cell proliferation, because islet number/cm(2) recovered insufficiently. In conclusion, perinatal malnutrition impairs neogenesis and the capacity of beta-cell regeneration by neogenesis but preserves beta-cell proliferation, which remains the elective choice to increase beta-cell mass. These results provide an explanation for the impaired capacity of malnourished animals to adapt their beta-cell mass during aging or pregnancy, which aggravate glucose tolerance.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号