首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   5篇
  64篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1998年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
Photobiont cells of the lichen Evernia prunastri have completely been separated from their fungal partner by filtration through a bed of Sepharose 2B. Both mannitol and ribitol have been quantified by gas-liquid chromatography in the different steps of the isolation procedure. Absence of mannitol, which is exclusively produced by the mycobiont, has been used as the best probe to monitor isolation.  相似文献   
2.
Arginase (EC 3.5.3.1), l-arginine decarboxylase (EC 4.1.1.19), and agmatine amidinohydrolase (EC 3.5.3.11) activities spontaneously decay in Evernia prunastri thalli incubated on 40 millimolar l-arginine used as inducer of the three enzymes if dithiothreitol is not added to the media. Lichen thalli accumulate both chloroatranorin and evernic acid in parallel to the loss of activity. These substances behave as inactivators of the enzymes at a range of concentrations between 2 and 20 micromolar, whereas several concentrations of dithiothreitol reverse, to some extent, the in vitro inactivation.  相似文献   
3.
The enzyme urease has been located in the cell wall of recently isolated phycobionts from Evernia prunastri and Xanthoria parietina lichens. Cytochemical detection is achieved by producing a black, electron-dense precipitate of cobalt sulfide proceeding from CO(2) evolved from urea in the presence of cobalt chloride. Cellular fractionation reveals that about 80% of total urease activity was associated to the cell wall on both phycobionts whereas only 20% was recovered as soluble protein.  相似文献   
4.
Two irrigation systems were used to compare nitrogen uptake efficiency in citrus trees and to evaluate the NO3 runoff in «Navelina» orange trees [Citrus sinensis (L.) Osbeck] on Carrizo citrange rootstock (Citrus sinensis × Poncirus trifoliata Raf.). These were fertilized with 125 g N as labelled K15NO3 and grown outdoors in containers filled with a sand-loamy soil. Two groups of 3 trees received this N dose either in five equally split applications by a flooding irrigation system or in 66 applications by drip. Trees were harvested at the end of the vegetative cycle (December) and the isotopic ratios of 15N/14N were measured in the soil-plant system. The N uptake efficiency of the whole tree was higher with drip irrigation (75 percnt;) than with flooding system (64 percnt;). In the 0-90 cm soil profile, the N immobilized in the organic fraction was similar for both irrigation methods (around 13 percnt;), whereas the N retained as NO3 was 1 percnt; of the N applied under drip and 10 percnt; under flooding. In the last case, most of NO3 remained under root system and it could be lost to leaching either by heavy rainfalls or excessive water applications. These results showed that a drip irrigation system was more efficient for improving water use and N uptake from fertilizer, in addition to potentially reduced leaching losses.  相似文献   
5.
Infection of sugarcane buds (var. Barbados 42231) with teliospores of Ustilago scitaminea changes the pattern of polyamine conjugation in several organs of 2-month-old plants. Stalks of infected plants contain SH-spermidine that does not occur in the healthy organ. Similar results have been obtained for SH-spermine in the first expanded leaf and in the stem. The amount of SH-cadaverine in the first expanded leaf, roots and stem of infected plants is always higher than that found for healthy plants. Some phenolics are also associated with different polyamine fractions. So, the amount of p-hydroxybenzoic acid in both SH and PH fractions of polyamines extracted from the root increases after infection. Syringic acid is the main phenol associated with the PH fraction in the first expanded leaf of infected plants, whereas this phenol is mainly associated with both SH and PH fractions isolated from the stem and the whip. Infection enhances conjugation of p-courmaric acid to PH polyamines, whereas caffeic acid appears in the SH fraction in leaf, root and stem. However, ferulic acid seems to be the main hydroxycinnamic acid derivative in the whip. Chlorogenic acid is associated with the SH fraction from the stem of healthy plants although this changes to free phenolics after infection.Key words:Saccharum officinarum, Ustilago sciaminea, phenolics, polyamines.   相似文献   
6.
Lichenized Nostoc cells isolated from the lichen Peltigera canina develop chemotactic movement towards a lectin purified from the lichen thallus. Inhibitors of cytoskeleton dynamics, such as phalloidin, latrunculin A and blebbistatin, impede cell displacement. The inhibition of chemotaxis produced by the combined action of phalloidin and blebbistatin is largely reversed by GTP and its analogs, GTP(γ)S and GDP(β)S, as well as by cyclic AMP. Movement implies a rearrangement of the cytoskeleton causing cell polarity, which is, in turn, inhibited by phalloidin and latrunculin A, as revealed by confocal microscopy. F-actin fibers composing Nostoc cytoskeleton have been visualized by immunocytochemical techniques associated with transmission electron microscopy.  相似文献   
7.
A glycosylated arginase acting as a fungal lectin from Peltigera canina is able to produce recruitment of cyanobiont Nostoc cells and their adhesion to the hyphal surface. This implies that the cyanobiont would develop organelles to motility toward the chemoattractant. However when visualized by transmission electron microscopy, Nostoc cells recently isolated from P. canina thallus do not reveal any motile, superficial organelles, although their surface was covered by small spindles and serrated layer related to gliding. The use of S-(3,4-dichlorobenzyl)isothiourea, blebbistatin, phalloidin and latrunculin A provide circumstantial evidence that actin microfilaments rather than MreB, the actin-like protein from prokaryota, and probably, an ATPase which develops contractile function similar to that of myosin II, are involved in cell motility. These experimental facts, the absence of superficial elements (fimbriae, pili or flagellum) related to cell movement, and the appearance of sunken cells during of after movement verified by scanning electron microscopy, support the hypothesis that the motility of lichen cyanobionts could be achieved by contraction-relaxation episodes of the cytoskeleton induced by fungal lectin act as a chemoattractant.Key words: F-actin, chemotropism, contractile protein, nostoc, Peltigera canina  相似文献   
8.
Visual symptoms of leaf scald necrosis in sugarcane (Saccharum officinarum) leaves develop in parallel to the accumulation of a fibrous material invading exocellular spaces and both xylem and phloem. These fibers are produced and secreted by the plant-associated bacterium Xanthomonas albilineans. Electron microscopy and specific staining methods for polysaccharides reveal the polysaccharidic nature of this material. These polysaccharides are not present in healthy leaves or in those from diseased plants without visual symptoms of leaf scald. Bacteria in several leaf tissues have been detected by immunogold labeling. The bacterial polysaccharide is not produced in axenic culture but it is actively synthesized when the microbes invade the host plant. This finding may be due to the production of plant glycoproteins, after bacteria infection which inhibit microbial proteases. In summary, our data are consistent with the existence of a positive feedback loop in which plant-produced glycoproteins act as a cell-to-bacteria signal that promotes xanthan production, by protecting some enzymes of xanthan biosynthesis against from bacterial proteolytic degradation.Key words: leaf scald, infectivity, Saccharum officinarum (L.) cv. mayarí 55-14, sugarcane glycoproteins, xanthan-like polysaccharide, Xanthomonas albilineans  相似文献   
9.
Soil flooding has been widely reported to affect large areas of the world. In this work, we investigated the effect of waterlogging on citrus carbon and nitrogen pools and partitioning. Influence on their uptake and translocation was also studied through 1?N and 13C labeling to provide insight into the physiological mechanisms underlying the responses. The data indicated that flooding severely reduced photosynthetic activity and affected growth and biomass partitioning. Total nitrogen content and concentration in the plant also progressively decreased throughout the course of the experiment. After 36 days of treatment, nitrogen content of flooded plants had decreased more than 2.3-fold compared to control seedlings, and reductions in nitrogen concentration ranged from 21 to 55% (in roots and leaves, respectively). Specific absorption rate and transport were also affected, leading to important changes in the distribution of this element inside the plant. Additionally, experiments involving labeled nitrogen revealed that 1?N uptake rate and accumulation were drastically decreased at the end of the experiment (93% and 54%, respectively). 13CO? assimilation into the plant was strongly reduced by flooding, with δ13C reductions ranging from 22 to 37% in leaves and roots, respectively. After 36 days, the relative distribution of absorbed 13C was also altered. Thus, 13C recovery in flooded leaves increased compared to controls, whereas roots exhibited the opposite pattern. Interestingly, when carbohydrate partitioning was examined, the data revealed that sucrose concentration was augmented significantly in roots (37-56%), whereas starch was reduced. In leaves, a marked increase in sucrose was detected from the first sampling onwards (36-66%), and the same patter was observed for starch. Taken together, these results indicate that flooding altered carbon and nitrogen pools and partitioning in citrus. On one hand, reduced nitrogen concentration appears to be a consequence of impaired uptake and transport. On the other hand, the observed changes in carbohydrate distribution suggest that translocation from leaves to roots was reduced, leading to significant starch accumulation in leaves and further decreases in roots.  相似文献   
10.
Xanthomonas albilineans is the causal organism of leaf scald, a bacterial vascular disease of sugarcane. Xanthomonas may invade the parenchyma between the bundles and cause reddened pockets of gum, identified as a xanthan-like polysaccharide. Since xanthan contains glucuronic acid, the ability of Xanthomonas to produce an active UDP glucose dehydrogenase is often seen as a virulence factor. X. albilineans axenically cultured did not secrete xanthans to Willbrink liquid media, but the use of inoculated sugarcane tissues for producing and characterizing xanthans has been required. A hypothesis about the role of sugarcane polysaccharides to assure the production of bacterial xanthan is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号