首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2501篇
  免费   229篇
  国内免费   2篇
  2023年   9篇
  2022年   24篇
  2021年   46篇
  2020年   39篇
  2019年   37篇
  2018年   75篇
  2017年   54篇
  2016年   71篇
  2015年   123篇
  2014年   134篇
  2013年   165篇
  2012年   181篇
  2011年   157篇
  2010年   118篇
  2009年   111篇
  2008年   136篇
  2007年   138篇
  2006年   149篇
  2005年   129篇
  2004年   114篇
  2003年   92篇
  2002年   87篇
  2001年   40篇
  2000年   46篇
  1999年   49篇
  1998年   27篇
  1997年   28篇
  1996年   20篇
  1995年   16篇
  1994年   19篇
  1993年   20篇
  1992年   22篇
  1991年   27篇
  1990年   17篇
  1989年   20篇
  1988年   20篇
  1987年   13篇
  1986年   16篇
  1984年   15篇
  1983年   10篇
  1982年   11篇
  1981年   12篇
  1980年   6篇
  1979年   10篇
  1978年   10篇
  1977年   6篇
  1976年   6篇
  1975年   9篇
  1972年   12篇
  1968年   6篇
排序方式: 共有2732条查询结果,搜索用时 46 毫秒
1.
2.
The antimicrobial efficacy of zinc (Zn) salts (sulfate and acetate) against Streptococcus mutans (S. mutans) present in the oral cavity was tested in this study. The substantivity of Zn salts was assessed by determining the concentration of Zn in whole, unstimulated saliva and by measuring the magnitude of suppression of salivary S. mutans, 2h after rinsing. The concentration of Zn was measured by atomic absorption spectrometry (AAS) with electrothermal atomization (ET AAS) in saliva sampled before (basal) and 24h after mouth rinsing with different concentrations of Zn (0.1%, 0.5% and 1%) administrated as sulfate and acetate. The estimation of Zn levels in samples collected 30, 60, 90 and 120 min after rinsing was carried out by AAS with flame atomization (FAAS). Immediately after rinsing, the concentration of Zn in saliva sharply increased with respect to the baseline values (0.055+/-0.017 mg/L), followed by a sustained decrease, probably due to clearance of salivary flow or swallowing during sampling. A significant reduction (>87%) in the total mean S. mutans counts was found 2h after rinsing either with sulfate or acetate solutions, as evidence of the high substantivity and effectiveness of the Zn salts tested. A statistically significant inverse relationship (p<0.001 and the Pearson correlation coefficients between -34% and -50%) was found between Zn levels and the respective pH values measured in the samples collected 60 and 120 min after rinsing, sustaining the theory of bacterial glycolysis inhibition.  相似文献   
3.
The adk gene encoding adenylate kinase in Escherichia coli was cloned in pBR322. Adenylate kinase represented about 4% of total proteins in extracts of cells containing the pBR322:adk plasmid. This allowed preparation of more than 90% pure enzyme in a single-step purification procedure. Amino acid analysis, high performance liquid chromatography separation of trypsin digests, sequence analysis of most peptides, and determination of the N-terminal sequence of the whole protein confirmed the primary structure of E. coli adenylate kinase predicted from the nucleotide sequence of the adk gene (Brune, M., Schumann, R., and Wittinghofer, F. (1985) Nucleic Acids Res. 13, 7139-7151). 2-Nitro-5-thiocyanatobenzoic acid reacted with the single cysteine residue of E. coli adenylate kinase. The cyanylated protein was cleaved upon exposure to alkaline pH, yielding two peptides corresponding to residues 1-76 and 77-214, respectively. A mixture of purified peptides tended to reassociate, recovering both catalytic activity and binding properties for adenine nucleotides. E. coli adenylate kinase has a broader specificity for nucleoside monophosphates than does the mammalian enzyme. In addition to 2'-dAMP, other nucleoside monophosphates such as 3'-dAMP, adenine-9-beta-D-arabinofuranoside 5'-monophosphate, and 7-deazaadenosine (tubercidine) 5'-monophosphate were able to replace AMP as substrate.  相似文献   
4.
Of the two mitochondrial enzymes of the urea cycle, carbamoyl phosphate synthetase (CPS) was and ornithine transcarbamylase (OTC) was not inactivated by the Fe3+-oxygen-ascorbate model system for mixed-function oxidation [R. L. Levine, (1983) J. Biol. Chem. 258, 11828-11833]. The susceptibility of OTC was not increased by its substrates, products, or inhibitors, whereas that of CPS was markedly increased by acetylglutamate (its allosteric activator) when ATP was absent. Thus, acetylglutamate binds in the absence of ATP and exposes to oxidation essential groups of the enzyme. We estimate for this binding a KD value of 1.6 mM, which greatly exceeds the KD values (less than 10 microM) determined in the presence of ATP and bicarbonate. ATP, and even more, mixtures of ATP and bicarbonate protected CPS from inactivation. Acetylglutamate exposes the site for the ATP molecule that yields Pi, and it appears that ATP protects by binding at this site. Experiments of limited proteolysis with elastase suggest that oxidation prevents this binding of ATP and show that it accelerates cleavage of CPS by the protease, thus supporting the idea that oxidation may precede proteolysis. Trypsin, chymotrypsin, and papain also hydrolyze the oxidized enzyme considerably faster than the native enzyme. Our results also support the idea that oxidative inactivation is site specific and requires sites on the enzyme for Me2+ and, possibly, for a nucleotide.  相似文献   
5.
Carbamoyl-phosphate synthetase was inactivated by elastase with first-order kinetics, and N-acetyl-L-glutamate speeded inactivation. From the dependence of the t1/2 value for inactivation on the concentration of acetylglutamate we estimate a Kd value for binding of the activator of 0.365 mM, which is approximately 600 times greater than in the presence of ATP, HCO3-, K+ and Mg2+. K+ and Mg2+ are not required for binding with low affinity, and in the absence of ATP they do not appear to increase the affinity for acetylglutamate. In the presence of acetylglutamate, mixtures of ATP, K+ and Mg2+ protect the enzyme from inactivation. ADP or AdoPP[NH]P partly replaced ATP in protecting the enzyme and thus binding of the nucleotide without further reaction is enough for protection. Two partial activities of the enzyme were inactivated by elastase to the same extent as the overall reaction, and thus elastase affects some property of the enzyme which is essential for catalysis. With other proteinases tested, inactivation was also accelerated by acetylglutamate and was slowed by mixtures of ATP, K+, Mg2+ and acetylglutamate, suggesting that changes in the accessibility of susceptible bonds are responsible for the changes in the degree of inactivation. It is concluded that elastase attacks at or close to the binding sites for ATP, and that exposure of the binding site for the ATP molecule that yields Pi (ATPA) upon binding of acetylglutamate causes the acceleration of the proteolytic inactivation.  相似文献   
6.
7.
Bacterial Metabolism of 2,6-Xylenol   总被引:3,自引:3,他引:0       下载免费PDF全文
Strain DM1, a Mycobacterium sp. that utilizes 2,6-xylenol, 2,3,6-trimethylphenol, and o-cresol as sources of carbon and energy, was isolated. Intact cells of Mycobacterium strain DM1 grown with 2,6-xylenol cooxidized 2,4,6-trimethylphenol to 2,4,6-trimethylresorcinol. 4-Chloro-3,5-dimethylphenol prevents 2,6-xylenol from being totally degraded; it was quantitatively converted to 2,6-dimethylhydroquinone by resting cells. 2,6-Dimethylhydroquinone, citraconate, and an unidentified metabolite were detected as products of 2,6-xylenol oxidation in cells that were partially inactivated by EDTA. Under oxygen limitation, 2,6-dimethylhy-droquinone, citraconate, and an unidentified metabolite were released during 2,6-xylenol turnover by resting cells. Cell extracts of 2,6-xylenol-grown cells contained a 2,6-dimethylhydroquinone-converting enzyme. When supplemented with NADH, cell extracts catalyzed the reduction of 2,6-dimethyl-3-hydroxyquinone to 2,6-dimethyl-3-hydroxyhydroquinone. Since a citraconase was also demonstrated in cell extracts, a new metabolic pathway with 2,6-dimethyl-3-hydroxyhydroquinone as the ring fission substrate is proposed.  相似文献   
8.
The Escherichia coli K-12 metH gene, encoding the vitamin B12-dependent homocysteine transmethylase, is located between iclR and lysC in the 91-min region of the chromosome. The metH gene has been sequenced and reveals an open reading frame of 3600 bp encoding a polypeptide of 1200 amino acids (aa) with a calculated Mr of 132 628. The first 414 aa of the deduced polypeptide sequence are 92% identical to the 414 aa deduced from the partially sequenced Salmonella typhimurium LT2 metH gene. In-frame fusions of metH to lacZ were used to confirm the reading frame of the metH gene and to study its regulation. metH was repressed tenfold, presumably indirectly, by L-methionine and the metJ gene product, while vitamin B12 did not induce de novo synthesis of MetH.  相似文献   
9.
Groups of CBA mice were administered [35S] methionine (1 mCi/mouse). Non-histone proteins, H1 and H10 histones and nucleosomal core histones were isolated from different issues by selective extractions. The measurements of radioactivity of individual bands and autoradiography of dry gels were used to identify methionine-containing and methionine-free histone variants. H1A and H1B histone variants extracted with 5% perchloric acid were methionine-free. However, minor sub-fractions of these histones which are more tightly bound to DNA (and which can be extracted only with 0.25 N HC1) contained [35S] methionine and did show a higher specific activity than methionine-containing nucleosomal hitones. Cyanogen Bromide reaction which destroys non-histone proteins and methionine-containing nucleosomal histones removes radioactivity but does not alter the position of methionine-containing H1 minor bands. This indicates that the radioactive methionine occupies only the N-terminus of the H1 molecules. It is suggested that this methionine is an uncleaved initiator methionine. The presence of these methionine-containing minor H1 subfractions varies in different tissues.  相似文献   
10.
Summary The illegitimate recombination between Staphylococcus aureus plasmids pE194 (or pGG20, the hybrid between pE194 and Escherichia coli plasmid pBR322) and pBD17 (plasmid pUB110 without HpaII C-fragment) was studied in Bacillus subtilis. Cointegrates were generated with the frequency of 1–3x10-8. Among 22 hybrids analysed 9 types of recombinants were found. Nucleotide sequences of all three parental plasmids were involved in intermolecular recombination. Nucleotide sequencing of recombinant DNA junctions revealed that in 8 cases recombination occurred between short homologous regions (9–15 bp). One recombinant was formed using nonhomologous sites. The similarity was demonstrated between nucleotide sequences of the recombination sites of two types of cointegrates and those used for pE194 integration into the B. subtilis chromosome. Possible mechanisms of illegitimate recombination are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号