首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   7篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2015年   6篇
  2014年   4篇
  2013年   4篇
  2012年   6篇
  2011年   6篇
  2010年   7篇
  2009年   1篇
  2008年   6篇
  2007年   7篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1965年   1篇
  1955年   1篇
  1941年   1篇
排序方式: 共有102条查询结果,搜索用时 31 毫秒
1.
2.
Juvenile and young adult specimens ofCarcinus maenas were kept in the laboratory under controlled conditions. The main organic constituents and their variations during the molt cycle were quantitatively determined.
1.  During postmolt the chitin concentration rises rapidly (20–74 mg/g dry weight) in parallel to the dry weight (120–293 mg/g fresh weight). Both decrease again before ecdysis (Fig. 1).
2.  The glycose level in the hemolymph (50–80 g/ml) shows no significant variation during the molt cycle (Fig. 2).
3.  The glycogen concentrations in integument, (14–180 mg/g dry weight), gills (5.5–66 mg/g dry weight), muscle (8.8–41 mg/g dry weight), heart (135–308 mg/g dry weight) and hemolymph (160–690 g/ml) reach their maximum values during the premolt stage. The highest glycogen content in the midgut gland (83 mg/g dry weight) is observed immediately before and after ecdysis. Glycogen storage in heart and hemolymph, can, account for about half of the glycogen stored in the midgut gland (Figs. 3,4 and 5).
4.  The lipid concentration in the hemolymph (120–440 g/ml) and in gills (33.6–70 mg/g dry weight) rises during the premolt stage (Figs. 6 and 7).
5.  The protein concentration in the hemolymph increased during premolt (9–31 mg/ml). The copper content (13–42 g/ml) varies in parallel to the protein concentration indicating that the proportion of hemocyanin to total proteins remains constant during the molting cycle (Fig. 8).
  相似文献   
3.
4.
5.
6.
7.
The functional insect ecdysteroid receptor is comprised of the ecdysone receptor (EcR) and Ultraspiracle (USP). The ligand-binding domain (LBD) of USP was fused to the GAL4 DNA-binding domain (GAL4-DBD) and characterized by analyzing the effect of site-directed mutations in the LBD. Normal and mutant proteins were tested for ligand and DNA binding, dimerization, and their ability to induce gene expression. The presence of helix 12 proved to be essential for DNA binding and was necessary to confer efficient ecdysteroid binding to the heterodimer with the EcR (LBD), but did not influence dimerization. The antagonistic position of helix 12 is indispensible for interaction between the fusion protein and DNA, whereas hormone binding to the EcR (LBD) was only partially reduced if fixation of helix 12 was disturbed. The mutation of amino acids, which presumably bind to a fatty acid evoked a profound negative influence on transactivation ability, although enhanced transactivation potency and ligand binding to the ecdysteroid receptor was impaired to varying degrees by mutation of these residues. Mutations of one fatty acid-binding residue within the ligand-binding pocket, 1323, however, evoked enhanced transactivation. The results confirmed that the LBD of Ultraspiracle modifies ecdysteroid receptor function through intermolecular interactions and demonstrated that the ligand-binding pocket of USP modifies the DNA-binding and transactivation abilities of the fusion protein.  相似文献   
8.
Ligand binding to ecdysone receptor (EcR) is an autonomous function of the ligand binding domain (LBD) and is not modified by other receptor domains or tags fused to the LBD. Association and dissociation velocity of hormone to EcR was studied in the absence and presence of its main dimerization partner Ultraspiracle (USP). Mutational analysis of the EcR(LBD) revealed that ligand entry and exit is affected differently by the same point mutation, indicating that different pathways are used for association and dissociation of the ligand. Heterodimerization with wild type USP(LBD) increases ligand association to EcR(LBD) about fivefold and reduces dissociation 18-fold. Opposite effects of the same mutation (N626K) on dissociation velocity of ligand in EcR and EcR/USP indicate that not only hormone binding itself, but also the kinetic behaviour of ligand binding is modified by the dimerization partner. A general effect of the point mutations on the 3D architecture seems unlikely due to the highly selective effects on the kinetics of hormone binding.  相似文献   
9.
The relationship between hippocampal function and aging was explored in Wistar rats using taste aversion learning by comparing the performance of adult dorsal hippocampal lesioned and fifteen-month-old intact rats with that of adult intact rats. In experiment 1 the conditioned blocking phenomenon was absent in the hippocampal and the aging rats. Unlike the adult intact rats, the hippocampal and aging rats were not impaired in acquiring a learned aversion to a cider vinegar solution (3 %) presented as a serial compound with a previously conditioned saccharin solution (0.1 %). In experiment 2 both the hippocampal and the aging rats developed reduced aversions to a saline solution (0.5 %) followed by an i.p. injection of lithium chloride (0.15 M; 2 % b.w.) if the taste solution was previously preexposed without consequences. This latent inhibition effect was similar to that seen in intact adult rats. In both experiments, the aging rats exhibited enhanced conventional learned taste aversions. It is concluded that aging is not a unitary process but induces both hippocampal dependent and hippocampal independent complex changes in the functioning of the neural circuits, implementing taste aversion learning.  相似文献   
10.
Mutants created by site-directed mutagenesis were used to elucidate the function of amino acids involved in ligand binding to ecdysteroid receptor (EcR) and heterodimer formation with ultraspiracle (USP). The results demonstrate the importance of the C-terminal part of the D-domain and helix 12 of EcR for hormone binding. Some amino acids are involved either in ligand binding to EcR (E476, M504, D572, I617, N626) or ligand-dependent heterodimerization as determined by gel mobility shift assays (A612, L615, T619), while others are involved in both functions (K497, E648). Some amino acids are suboptimal for ligand binding (L615, T619), but mediate ligand-dependent dimerization. We conclude that the enhanced regulatory potential by ligand-dependent modulation of dimerization in the wild type is achieved at the expense of optimal ligand binding. Mutation of amino acids (K497, E648) involved in the salt bridge between helix 4 and 12 impair ligand binding to EcR more severely than hormone binding to the heterodimer, indicating that to some extent heterodimerization compensates for the deleterious effect of certain mutations. Different effects of the same point mutations on ligand binding to EcR and EcR/USP (R511, A612, L615, I617, T619, N626) indicate that the ligand-binding pocket is modified by heterodimerization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号