首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   6篇
  2005年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
2.
Genome integrity is jeopardized each time DNA replication forks stall or collapse. Here we report the identification of a complex composed of MMS22L (C6ORF167) and TONSL (NFKBIL2) that participates in the recovery from replication stress. MMS22L and TONSL are homologous to yeast Mms22 and plant Tonsoku/Brushy1, respectively. MMS22L-TONSL accumulates at regions of ssDNA associated with distressed replication forks or at processed DNA breaks, and its depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to complete DNA synthesis after replication fork collapse. Moreover, cells depleted of MMS22L are highly sensitive to camptothecin,?a topoisomerase I poison that impairs DNA replication progression. Finally, MMS22L and TONSL are necessary for the efficient formation of RAD51 foci after DNA damage, and their depletion impairs homologous recombination. These results indicate that MMS22L and TONSL are genome caretakers that stimulate the recombination-dependent repair of stalled or collapsed replication forks.  相似文献   
3.
A procedure is presented for refinement of a homology model of E. coli tRNAVal, originally based on the X-ray structure of yeast tRNAPhe, using experimental residual dipolar coupling (RDC) and small angle X-ray scattering (SAXS) data. A spherical sampling algorithm is described for refinement against SAXS data that does not require a globbic approximation, which is particularly important for nucleic acids where such approximations are less appropriate. Substantially higher speed of the algorithm also makes its application favorable for proteins. In addition to the SAXS data, the structure refinement employed a sparse set of NMR data consisting of 24 imino N–HN RDCs measured with Pf1 phage alignment, and 20 imino N–HN RDCs obtained from magnetic field dependent alignment of tRNAVal. The refinement strategy aims to largely retain the local geometry of the 58% identical tRNAPhe by ensuring that the atomic coordinates for short, overlapping segments of the ribose-phosphate backbone and the conserved base pairs remain close to those of the starting model. Local coordinate restraints are enforced using the non-crystallographic symmetry (NCS) term in the XPLOR-NIH or CNS software package, while still permitting modest movements of adjacent segments. The RDCs mainly drive the relative orientation of the helical arms, whereas the SAXS restraints ensure an overall molecular shape compatible with experimental scattering data. The resulting structure exhibits good cross-validation statistics (jack-knifed Q free = 14% for the Pf1 RDCs, compared to 25% for the starting model) and exhibits a larger angle between the two helical arms than observed in the X-ray structure of tRNAPhe, in agreement with previous NMR-based tRNAVal models. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
4.
The effects of various metal ions on cleavage activity and global folding have been studied in the extended Schistosoma hammerhead ribozyme. Fluorescence resonance energy transfer was used to probe global folding as a function of various monovalent and divalent metal ions in this ribozyme. The divalent metals ions Ca2+, Mg2+, Mn2+, and Sr2+ have a relatively small variation (less than sixfold) in their ability to globally fold the hammerhead ribozyme, which contrasts with the very large difference (>10,000-fold) in apparent rate constants for cleavage for these divalent metal ions in single-turnover kinetic experiments. There is still a very large range (>4600-fold) in the apparent rate constants for cleavage for these divalent metal ions measured in high salt (2 M NaCl) conditions where the ribozyme is globally folded. These results demonstrate that the identity of the divalent metal ion has little effect on global folding of the Schistosoma hammerhead ribozyme, whereas it has a very large effect on the cleavage kinetics. Mechanisms by which the identity of the divalent metal ion can have such a large effect on cleavage activity in the Schistosoma hammerhead ribozyme are discussed.  相似文献   
5.

Background

Leber''s hereditary optic neuropathy (LHON) is a maternally inherited disorder with point mutations in mitochondrial DNA which result in loss of vision in young adults. The majority of mutations reported to date are within the genes encoding the subunits of the mitochondrial NADH-quinone oxidoreductase, complex I. Establishment of animal models of LHON should help elucidate mechanism of the disease and could be utilized for possible development of therapeutic strategies.

Methodology/Principal Findings

We established a rat model which involves injection of rotenone-loaded microspheres into the optic layer of the rat superior colliculus. The animals exhibited the most common features of LHON. Visual loss was observed within 2 weeks of rotenone administration with no apparent effect on retinal ganglion cells. Death of retinal ganglion cells occurred at a later stage. Using our rat model, we investigated the effect of the yeast alternative NADH dehydrogenase, Ndi1. We were able to achieve efficient expression of the Ndi1 protein in the mitochondria of all regions of retinal ganglion cells and axons by delivering the NDI1 gene into the optical layer of the superior colliculus. Remarkably, even after the vision of the rats was severely impaired, treatment of the animals with the NDI1 gene led to a complete restoration of the vision to the normal level. Control groups that received either empty vector or the GFP gene had no effects.

Conclusions/Significance

The present study reports successful manifestation of LHON-like symptoms in rats and demonstrates the potential of the NDI1 gene therapy on mitochondrial optic neuropathies. Our results indicate a window of opportunity for the gene therapy to be applied successfully after the onset of the disease symptoms.  相似文献   
6.
Because of the decreasing fossil fuel supply and increasing greenhouse gas (GHG) emissions, microalgae have been identified as a viable and sustainable feedstock for biofuel production. The major effect of the release of wastewater rich in organic compounds has led to the eutrophication of freshwater ecosystems. A combined approach of freshwater diatom cultivation with urban sewage water treatment is a promising solution for nutrient removal and biofuel production. In this study, urban wastewater from eutrophic Hussain Sagar Lake was used to cultivate a diatom algae consortium, and the effects of silica and trace metal enrichment on growth, nutrient removal, and lipid production were evaluated. The nano-silica-based micronutrient mixture Nualgi containing Si, Fe, and metal ions was used to optimize diatom growth. Respectively, N and P reductions of 95.1% and 88.9%, COD and BOD reductions of 91% and 51% with a biomass yield of 122.5 mg L?1 day?1 and lipid productivity of 37 mg L?1 day?1 were observed for cultures grown in waste water using Nualgi. Fatty acid profiles revealed 13 different fatty acids with slight differences in their percentage of dry cell weight (DCW) depending on enrichment level. These results demonstrate the potential of diatom algae grown in wastewater to produce feedstock for renewable biodiesel production. Enhanced carbon and excess nutrient utilization makes diatoms ideal candidates for co-processes such as CO2 sequestration, biodiesel production, and wastewater phycoremediation.  相似文献   
7.
Undifferentiated human epidermal keratinocytes are self‐renewing stem cells that can be induced to undergo a program of differentiation by varying the calcium chloride concentration in the culture media. We utilize this model of cell differentiation and a 3D chromosome painting technique to document significant changes in the radial arrangement, morphology, and interchromosomal associations between the gene poor chromosome 18 and the gene rich chromosome 19 territories at discrete stages during keratinocyte differentiation. We suggest that changes observed in chromosomal territorial organization provides an architectural basis for genomic function during cell differentiation and provide further support for a chromosome territory code that contributes to gene expression at the global level. J. Cell. Physiol. J. Cell. Physiol. 221: 139–146, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号