首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   8篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2005年   11篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  1999年   3篇
  1998年   2篇
  1995年   2篇
  1994年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1985年   7篇
  1984年   2篇
  1983年   1篇
  1979年   3篇
  1977年   1篇
  1974年   2篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
1.
2.
We report the study of five independent X-linked hydrocephalus (HSAS1) families with polymorphic DNA markers of the Xq28 region. A total of 58 individuals, including 7 living affected males and 22 obligate carriers, have been studied. Maximum lod score was 7.21 at theta = 2.40% for DXS52 (St14-1). A single recombination event was observed between this marker and the HSAS1 locus. Other markers studied were DXS296 (Z = 2.02 at theta = 2.5%), DXS304 (Z = 4.37 at theta = 7.8%), DXS74 (Z = 3.50 at theta = 0%), DXS15 (Z = 1.96 at theta = 5.7%), DXS134 (Z = 3.31 at theta = 0%), and F8C (Z = 5.79 at theta = 0%). These data confirm the localization of the HSAS1 gene to Xq28 and provide evidence for genetic homogeneity of this syndrome. In addition, examination of two obligate recombinant meioses along with multipoint linkage analysis supports the distal localization of the HSAS1 locus with respect to the DXS52 cluster. These observations are of potential interest for future studies aimed at HSAS1 gene characterization.  相似文献   
3.
Summary A total of 252 chromosomes from 126 patients with phenylalanine hydroxylase (PAH) deficiencies were analyzed for both mutant genotypes and restriction fragment length polymorphism (RFLP) haplotypes at the PAH locus. The mutant genes studied originated either from Western Europe (116 alleles) or from Mediterranean countries (136 alleles). Only 27% of all mutant alleles were found to carry identified mutations, particularly mutations at codon 252 (2.3%), 261 (7.5%), 280 (6.3%), 408 (3.5%) and at the splice donor site of intron 12 (6.3%). The mutant genotypes were associated with RFLP haplotypes 7, 1, 38, 2 and 3 at the PAH locus respectively. Except for the splice mutation of intron 12, these associations were preferential, but not exclusive, since the other four mutations were found on the background of at least two RFLP haplotypes. These results, together with the observation that 85% of PAH deficient patients are heterozygotes for their mutant genotypes, emphasize the great heterogeneity of PAH deficiencies in Mediterranean countries and hamper systematic DNA testing for carrier status in this population.  相似文献   
4.
5.
Authors examined 80 pairs of parents with affected children with spina-bifida. They compared the incidence of spina-bifida occulta in parents and in 211 controls. The conclusion is: there is no increased incidence of spina-bifida occulta in parents of spina-bifida.  相似文献   
6.
Mapping of a Gene for Long QT Syndrome to Chromosome 4q25-27   总被引:21,自引:0,他引:21  
Long QT syndrome (LQTS) is a heterogeneous inherited disorder causing syncope and sudden death from ventricular arrhythmias. A first locus for this disorder was mapped to chromosome 11p15.5. However, locus heterogeneity has been demonstrated in several families, and two other loci have recently been located on chromosomes 7q35-36 and 3p21-24. We used linkage analysis to map the locus in a 65-member family in which LQTS was associated with more marked sinus bradycardia than usual, leading to sinus node dysfunction. Linkage to chromosome 11p15.5, 7q35-36, or 3p21-24 was excluded. Positive linkage was obtained for markers located on chromosome 4q25-27. A maximal LOD score of 7.05 was found for marker D4S402. The identification of a fourth locus for LQTS confirms its genetic heterogeneity. Locus 4q25-27 is associated with a peculiar phenotype within the LQTS entity.  相似文献   
7.
We show that the geophilomorph centipede Strigamia maritima possesses an XX/XY system of sex chromosomes, with males being the heterogametic sex. This is, to our knowledge, the first report of sex chromosomes in any geophilomorph centipede. Using the recently assembled Strigamia genome sequence, we identified a set of scaffolds differentially represented in male and female DNA sequence. Using quantitative real-time PCR, we confirmed that three candidate X chromosome-derived scaffolds are present at approximately twice the copy number in females as in males. Furthermore, we confirmed that six candidate Y chromosome-derived scaffolds contain male-specific sequences. Finally, using this molecular information, we designed an X chromosome-specific DNA probe and performed fluorescent in situ hybridization against mitotic and meiotic chromosome spreads to identify the Strigamia XY sex-chromosome pair cytologically. We found that the X and Y chromosomes are recognizably different in size during the early pachytene stage of meiosis, and exhibit incomplete and delayed pairing.  相似文献   
8.
Bioprocess and Biosystems Engineering - Design dark fraction reflects the unlit part of a microalgal culture system, as for example a hydraulic loop used for temperature or pH regulation, or a...  相似文献   
9.
An in‐depth investigation of how various illumination conditions influence microalgal growth in photobioreactors (PBR) has been presented. Effects of both the light emission spectrum (white and red) and the light incident angle (0° and 60°) on the PBR surface were investigated. The experiments were conducted in two fully controlled lab‐scale PBRs, a torus PBR and a thin flat‐panel PBR for high cell density culture. The results obtained in the torus PBR were used to build the kinetic growth model of Chlorella vulgaris taken as a model species. The PBR model was then applied to the thin flat‐panel PBR, which was run with various illumination conditions. Its detailed representation of local rate of photon absorption under various conditions (spectral calculation of light attenuation, incident angle influence) enabled the model to take into account all the tested conditions with no further adjustment. This allowed a detailed investigation of the coupling between radiation field and photosynthetic growth. Effects of all the radiation conditions together with pigment acclimation, which was found to be relevant, were investigated in depth. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:247–261, 2016  相似文献   
10.
We examined the presence of TTAGG telomeric repeats in 22 species from 20 insect orders with no or inconclusive information on the telomere composition by single-primer polymerase chain reaction with (TTAGG)6 primers, Southern hybridization of genomic DNAs, and fluorescence in situ hybridization of chromosomes with (TTAGG)n probes. The (TTAGG)n sequence was present in 15 species and absent in 7 species. In a compilation of new and published data, we combined the distribution of (TTAGG)n telomere motif with the insect phylogenetic tree. The pattern of phylogenetic distribution of the TTAGG repeats clearly supported a hypothesis that the sequence was an ancestral motif of insect telomeres but was lost repeatedly during insect evolution. The motif was conserved in the "primitive" apterous insect orders, the Archaeognatha and Zygentoma, in the "lower" Neoptera (Plecoptera, Phasmida, Orthoptera, Blattaria, Mantodea, and Isoptera) with the exception of Dermaptera, and in Paraneoptera (Psocoptera, Thysanoptera, Auchenorrhyncha, and Sternorrhyncha) with the exception of Heteroptera. Surprisingly, the (TTAGG)n motif was not found in the "primitive" pterygotes, the Palaeoptera (Ephemeroptera and Odonata). The Endopterygota were heterogeneous for the occurrence of TTAGG repeats. The motif was conserved in Hymenoptera, Lepidoptera, and Trichoptera but was lost in one clade formed by Diptera, Siphonaptera, and Mecoptera. It was also lost in Raphidioptera, whereas it was present in Megaloptera. In contrast with previous authors, we did not find the motif in Neuroptera. Finally, both TTAGG-positive and TTAGG-negative species were reported in Coleoptera. The repeated losses of TTAGG in different branches of the insect phylogenetic tree and, in particular, in the most successful lineage of insect evolution, the Endopterygota, suggest a backup mechanism in the genome of insects that enabled them frequent evolutionary changes in telomere composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号