首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  1997年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
This study investigated the relationships between blood pressure, cortical oxygen pressure, and extracellular striatal dopamine in the brain of adult cats during hemorrhagic hypotension and re-transfusion. Oxygen pressure in the blood of the cortex was measured by the oxygen dependent quenching of phosphorescence and extracellular dopamine, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) by in vivo microdialysis. Following a 2 h stabilization period after implantation of the microdialysis probe in the striatum, the mean arterial blood pressure (MAP) was decreased in a stepwise manner from 132 ± 2 Torr (control) to 90 Torr, 70 Torr and 50 Torr, holding the pressure at each level for 15 min. The whole blood was then retransfused and measurements were continued for 90 min. As the MAP was lowered there was a decrease in arterial pH, from a control value of 7.37 ± 0.05 to 7.26 ± 0.06. The PaCO2 decreased during bleeding from 32.3 ± 4.8 Torr to 19.6 ± 3.6 Torr and returned to 30.9 ± 3.9 Torr after retransfusion. The PaO2 was 125.9 ± 15 Torr during control conditions and did not significantly change during bleeding. Cortical oxygen pressure decreased with decrease in MAP, from 50 ± 2 Torr (control) to 42 ± 1 Torr, 31 ± 2 Torr and 22 ± 2 Torr, respectively. A statistically significant increase in striatal extracellular dopamine, to 2,580 ± 714% of control was observed when MAP decreased to below 70 Torr and cortical oxygen pressure decreased to below 31 Torr. When the MAP reached 50 Torr, the concentration of extracellular dopamine increased to 18,359 ± 2,764% of the control value. A statistically significant decrease in DOPAC and HVA were observed during the last step of bleeding. The data show that decreases in systemic blood pressure result in decrease in oxygen pressure in the microvasculature of the cortex, suggesting vascular dilation is not sufficient to result in a full compensation for the decreased MAP. The decrease in cortical oxygen pressure to below 32 Torr is accompanied by a marked increase in extracellular dopamine in the striatum, indicating that even such mild hypoxia can induce significant disturbance in brain metabolism.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号