首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   758篇
  免费   28篇
  786篇
  2023年   6篇
  2022年   4篇
  2021年   12篇
  2020年   16篇
  2019年   23篇
  2018年   15篇
  2017年   18篇
  2016年   30篇
  2015年   32篇
  2014年   32篇
  2013年   52篇
  2012年   67篇
  2011年   54篇
  2010年   29篇
  2009年   23篇
  2008年   48篇
  2007年   45篇
  2006年   40篇
  2005年   46篇
  2004年   43篇
  2003年   39篇
  2002年   31篇
  2000年   1篇
  1999年   5篇
  1998年   8篇
  1997年   3篇
  1996年   7篇
  1995年   3篇
  1994年   9篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1990年   6篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1952年   1篇
  1949年   1篇
  1948年   1篇
排序方式: 共有786条查询结果,搜索用时 15 毫秒
1.
The vascular response to injury is a well-orchestrated inflammatory response triggered by the accumulation of macrophages within the vessel wall leading to an accumulation of lipid-laden intra-luminal plaque, smooth muscle cell proliferation and progressive narrowing of the vessel lumen. The formation of such vulnerable plaques prone to rupture underlies the majority of cases of acute myocardial infarction. The complex molecular and cellular inflammatory cascade is orchestrated by the recruitment of T lymphocytes and macrophages and their paracrine effects on endothelial and smooth muscle cells.1Molecular imaging in atherosclerosis has evolved into an important clinical and research tool that allows in vivo visualization of inflammation and other biological processes. Several recent examples demonstrate the ability to detect high-risk plaques in patients, and assess the effects of pharmacotherapeutics in atherosclerosis.4 While a number of molecular imaging approaches (in particular MRI and PET) can image biological aspects of large vessels such as the carotid arteries, scant options exist for imaging of coronary arteries.2 The advent of high-resolution optical imaging strategies, in particular near-infrared fluorescence (NIRF), coupled with activatable fluorescent probes, have enhanced sensitivity and led to the development of new intravascular strategies to improve biological imaging of human coronary atherosclerosis.Near infrared fluorescence (NIRF) molecular imaging utilizes excitation light with a defined band width (650-900 nm) as a source of photons that, when delivered to an optical contrast agent or fluorescent probe, emits fluorescence in the NIR window that can be detected using an appropriate emission filter and a high sensitivity charge-coupled camera. As opposed to visible light, NIR light penetrates deeply into tissue, is markedly less attenuated by endogenous photon absorbers such as hemoglobin, lipid and water, and enables high target-to-background ratios due to reduced autofluorescence in the NIR window. Imaging within the NIR ''window'' can substantially improve the potential for in vivo imaging.2,5Inflammatory cysteine proteases have been well studied using activatable NIRF probes10, and play important roles in atherogenesis. Via degradation of the extracellular matrix, cysteine proteases contribute importantly to the progression and complications of atherosclerosis8. In particular, the cysteine protease, cathepsin B, is highly expressed and colocalizes with macrophages in experimental murine, rabbit, and human atheromata.3,6,7 In addition, cathepsin B activity in plaques can be sensed in vivo utilizing a previously described 1-D intravascular near-infrared fluorescence technology6, in conjunction with an injectable nanosensor agent that consists of a poly-lysine polymer backbone derivatized with multiple NIR fluorochromes (VM110/Prosense750, ex/em 750/780nm, VisEn Medical, Woburn, MA) that results in strong intramolecular quenching at baseline.10 Following targeted enzymatic cleavage by cysteine proteases such as cathepsin B (known to colocalize with plaque macrophages), the fluorochromes separate, resulting in substantial amplification of the NIRF signal. Intravascular detection of NIR fluorescence signal by the utilized novel 2D intravascular NIRF catheter now enables high-resolution, geometrically accurate in vivo detection of cathepsin B activity in inflamed plaque. In vivo molecular imaging of atherosclerosis using catheter-based 2D NIRF imaging, as opposed to a prior 1-D spectroscopic approach,6 is a novel and promising tool that utilizes augmented protease activity in macrophage-rich plaque to detect vascular inflammation.11,12 The following research protocol describes the use of an intravascular 2-dimensional NIRF catheter to image and characterize plaque structure utilizing key aspects of plaque biology. It is a translatable platform that when integrated with existing clinical imaging technologies including angiography and intravascular ultrasound (IVUS), offers a unique and novel integrated multimodal molecular imaging technique that distinguishes inflammatory atheromata, and allows detection of intravascular NIRF signals in human-sized coronary arteries.Download video file.(61M, mov)  相似文献   
2.
    
Actin, one of the most abundant proteins in the eukaryotic cell, also has an abundance of relatives in the eukaryotic proteome. To date though, only five families of actins have been characterized in bacteria. We have conducted a phylogenetic search and uncovered more than 35 highly divergent families of actin-like proteins (Alps) in bacteria. Their genes are found primarily on phage genomes, on plasmids and on integrating conjugative elements, and are likely to be involved in a variety of functions. We characterize three Alps and find that all form filaments in the cell. The filaments of Alp7A, a plasmid partitioning protein and one of the most divergent of the Alps, display dynamic instability and also treadmill. Alp7A requires other elements from the plasmid to assemble into dynamic polymers in the cell. Our findings suggest that most if not all of the Alps are indeed actin relatives, and that actin is very well represented in bacteria.  相似文献   
3.
Cotyledons were excised from imbibed watermelon seeds, grown for 4 days in darkness on water or 10 M benzyladenine (BA) and then tested for the presence of the light-harvesting chlorophyll a/b protein (LHCP) and its mRNA. LHCP was assayed immunologically by western blotting of SDS gels: the protein was present in plastids, but it was not recovered with the thylakoid fraction. Antibodies directed against LHCP precipitated a 32 kDa polypeptide from translation products of poly(A) RNA of cotyledons only if these had been grown on BA. Taken together the data suggest that in absence of light cytokinins are necessary for the maintenance of a detectable level of LHCP-mRNA as well as for synthesis of the protein.  相似文献   
4.
Primate populations, including Madagascar’s lemurs, are threatened worldwide and conservationists need accurate population estimates to develop targeted conservation plans. We sought to fill knowledge gaps for three lemur taxa —white-fronted brown lemur (Eulemur albifrons); eastern woolly lemur (Avahi laniger); and Allocebus/Microcebus, a category combining observations of hairy-eared dwarf lemurs (Allocebus trichotis) and mouse lemurs (Microcebus spp.)— in northeastern Madagascar by estimating their density, examining how their encounter rates and densities vary across three different forest types, and monitoring trends in encounter rates and densities at resurveyed sites, using data from surveys at six forest sites over a 4-year period (2010–2013). Landscape density for white-fronted brown lemur, eastern woolly lemur, and Allocebus/Microcebus was 21.5 (SE 3.67), 57.7 (SE 9.17), and 39.1 (SE 9.55) individuals/km2, respectively. There was no difference in density estimates at intact and intermediately degraded forest sites; however, we encountered white-fronted brown lemurs more often in intact forest (1.64 ± SE 0.40 individuals/km) than in intermediately degraded and degraded forest (0.15 ± SE 0.06 and 0.16 ± SE 0.06 individuals/km). In addition, we encountered white-fronted brown lemurs at lower rates in 2013 (0.15 ± SE 0.06 individuals/km) compared to 2010 (0.82 ± SE 0.12 individuals/km) at a resurveyed site. Our findings emphasize that primate researchers must account for variation in how lemur encounter rates and densities differ between intact and degraded forests, and although we observed a decline in white-fronted brown lemur encounter rate at our resurveyed site, we caution that changes in lemur encounter rates may simply reflect lower detection rates rather than lower density. Future research should focus on using conventional distance sampling techniques, which are infrequently used in primate studies, to provide more robust density estimates as a way to accurately assess trends and the effects of anthropogenic pressures on lemur populations.  相似文献   
5.
6.
7.
Calcium-calmodulin/dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK), and extracellular signal-regulated kinase (ERK1/2) have each been implicated in the regulation of substrate metabolism during exercise. The purpose of this study was to determine whether CaMKII is involved in the regulation of FA uptake and oxidation and, if it is involved, whether it does so independently of AMPK and ERK1/2. Rat hindquarters were perfused at rest with (n = 16) or without (n = 10) 3 mM caffeine, or during electrical stimulation (n = 14). For each condition, rats were subdivided and treated with 10 muM of either KN92 or KN93, inactive and active CaMKII inhibitors, respectively. Both caffeine treatment and electrical stimulation significantly increased FA uptake and oxidation. KN93 abolished caffeine-induced FA uptake, decreased contraction-induced FA uptake by 33%, and abolished both caffeine- and contraction-induced FA oxidation (P < 0.05). Caffeine had no effect on ERK1/2 phosphorylation (P > 0.05) and increased alpha(2)-AMPK activity by 68% (P < 0.05). Electrical stimulation increased ERK1/2 phosphorylation and alpha(2)-AMPK activity by 51% and 3.4-fold, respectively (P < 0.05). KN93 had no effect on caffeine-induced alpha(2)-AMPK activity, ERK1/2 phosphorylation, or contraction-induced ERK1/2 phosphorylation (P > 0.05). Alternatively, it decreased contraction-induced alpha(2)-AMPK activity by 51% (P < 0.05), suggesting that CaMKII lies upstream of AMPK. These results demonstrate that regulation of contraction-induced FA uptake and oxidation occurs in part via Ca(2+)-independent activation of ERK1/2 as well as Ca(2+)-dependent activation of CaMKII and AMPK.  相似文献   
8.
The proteasome inhibitor bortezomib (Velcade) is prescribed for the treatment of multiple myeloma. Clinically achievable concentrations of bortezomib cause less than 85% inhibition of the chymotrypsin-like activity of the proteasome, but little attention has been paid as to whether in vitro studies are representative of this level of inhibition. Patients receive bortezomib as an intravenous or subcutaneous bolus injection, resulting in maximum proteasome inhibition within one hour followed by a gradual recovery of activity. In contrast, most in vitro studies use continuous treatment so that activity never recovers. Replacing continuous treatment with 1 h-pulse treatment increases differences in sensitivity in a panel of 7 multiple myeloma cell lines from 5.3-fold to 18-fold, and reveals that the more sensitive cell lines undergo apoptosis at faster rates. Clinically achievable inhibition of active sites was sufficient to induce cytotoxicity only in one cell line. At concentrations of bortezomib that produced similar inhibition of peptidase activities a different extent of inhibition of protein degradation was observed, providing an explanation for the differential sensitivity. The amount of protein degraded per number of active proteasomes correlated with sensitivity to bortezomib. Thus, (i) in vitro studies of proteasome inhibitors should be conducted at pharmacologically achievable concentrations and duration of treatment; (ii) a similar level of inhibition of active sites results in a different extent of inhibition of protein breakdown in different cell lines, and hence a difference in sensitivity.  相似文献   
9.
10.
Antitumor agents that bind to tubulin and disrupt microtubule dynamics have attracted considerable attention in the last few years. To extend our knowledge of the thiazole ring as a suitable mimic for the cis-olefin present in combretastatin A-4, we fixed the 3,4,5-trimethoxyphenyl at the C4-position of the thiazole core. We found that the substituents at the C2- and C5-positions had a profound effect on antiproliferative activity. Comparing compounds with the same substituents at the C5-position of the thiazole ring, the moiety at the C2-position influenced antiproliferative activities, with the order of potency being NHCH3 > Me ? N(CH3)2. The N-methylamino substituent significantly improved antiproliferative activity on MCF-7 cells with respect to C2-amino counterparts. Increasing steric bulk at the C2-position from N-methylamino to N,N-dimethylamino caused a 1–2 log decrease in activity. The 2-N-methylamino thiazole derivatives 3b, 3d and 3e were the most active compounds as antiproliferative agents, with IC50 values from low micromolar to single digit nanomolar, and, in addition, they are also active on multidrug-resistant cell lines over-expressing P-glycoprotein. Antiproliferative activity was probably caused by the compounds binding to the colchicines site of tubulin polymerization and disrupting microtubule dynamics. Moreover, the most active compound 3e induced apoptosis through the activation of caspase-2, -3 and -8, but 3e did not cause mitochondrial depolarization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号