首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  2023年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Cardiovascular disease is the most common cause of death, accounting for 31% of deaths worldwide. As purely synthetic grafts implicate concomitant anticoagulation and autologous veins are rare, tissue‐engineered vascular grafts are urgently needed. For successful in vitro cultivation of a bioartificial vascular graft, the suitable bioreactor should provide conditions comparable to vasculogenesis in the body. Such a system has been developed and characterized under continuous and pulsatile flow, and a variety of sensors has been integrated into the bioreactor to control parameters such as temperature, pressure up to 500 mbar, glucose up to 4.5 g/L, lactate, oxygen up to 150 mbar, and flow rate. Wireless data transfer (using the ZigBee specification based on the IEEE 802.15.4 standard) and multiple corresponding sensor signal processing platforms have been implemented as well. Ultrasound is used for touchless monitoring of the growing vascular structure as a quality control before implantation (maximally achieved ultrasound resolution 65 μm at 15 MHz). To withstand the harsh conditions of steam sterilization (120°C for 20 min), all electronics were encapsulated. With such a comprehensive physiologically conditioning, sensing, and imaging bioreactor system, all the requirements for a successful cultivation of vascular grafts are available now.  相似文献   
2.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created a public crisis. Many medical and public institutions and businesses went into isolation in response to the pandemic. Because SARS-CoV-2 can spread irrespective of a patient's course of disease, these institutions’ continued operation or reopening based on the assessment and control of virus spread can be supported by targeted population screening. For this purpose, virus testing in the form of polymerase chain reaction (PCR) analysis and antibody detection in blood can be central. Mobile SARS-CoV-2 screening facilities with a built-in biosafety level (BSL)-2 laboratory were set up to allow the testing offer to be brought close to the subject group's workplace. University staff members, their expertise, and already available equipment were used to implement and operate the screening facilities and a certified diagnostic laboratory. This operation also included specimen collection, transport, PCR and antibody analysis, and informing subjects as well as public health departments. Screening facilities were established at different locations such as educational institutions, nursing homes, and companies providing critical supply chains for health care. Less than 4 weeks after the first imposed lockdown in Germany, a first mobile testing station was established featuring a build-in laboratory with two similar stations commencing operation until June 2020. During the 15-month project period, approximately 33,000 PCR tests and close to 7000 antibody detection tests were collected and analyzed. The presented approach describes the required procedures that enabled the screening facilities and laboratories to collect and process several hundred specimens each day under difficult conditions. This report can assist others in establishing similar setups for pandemic scenarios.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号