首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
  2018年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
Muscle-eye-brain (MEB) disease is a congenital muscular dystrophy (CMD) phenotype characterized by hypotonia at birth, brain structural abnormalities and ocular malformations. To date, few MEB cases have been reported in China where clinical recognition and genetic confirmatory testing on a research basis are recent developments. Here, we report the clinical and molecular genetics of three MEB disease patients. The patients had different degrees of muscle, eye and brain symptoms, ranging from congenital hypotonia, early-onset severe myopia and mental retardation to mild weakness, independent walking and language problems. This confirmed the expanding phenotypic spectrum of MEB disease with varying degrees of hypotonia, myopia and cognitive impairment. Brain magnetic resonance imaging showed cerebellar cysts, hypoplasia and characteristic brainstem flattening and kinking. Four candidate genes (POMGnT1, FKRP, FKTN and POMT2) were screened, and six POMGnT1 mutations (four novel) were identified, including five missense and one splice site mutation. Pathogenicity of the two novel variants in one patient was confirmed by POMGnT1 enzyme activity assay, protein expression and subcellular localization of mutant POMGnT1 in HeLa cells. Transfected cells harboring this patient’s L440R mutant POMGnT1 showed POMGnT1 mislocalization to both the Golgi apparatus and endoplasmic reticulum. We have provided clinical, histological, enzymatic and genetic evidence of POMGnT1 involvement in three unrelated MEB disease patients in China. The identification of novel POMGnT1 mutations and an expanded phenotypic spectrum contributes to an improved understanding of POMGnT1 structure–function relationships, CMD pathophysiology and genotype–phenotype correlations, while underscoring the need to consider POMGnT1 in Chinese MEB disease patients.  相似文献   
2.
Hypoglycosylation is a common characteristic of dystroglycanopathy, which is a group of congenital muscular dystrophies. More than ten genes have been implicated in α-dystroglycanopathies that are associated with the defect in the O-mannosylation pathway. One such gene is GTDC2, which was recently reported to encode O-mannose β-1,4-N-acetylglucosaminyltransferase. Here we show that GTDC2 generates CTD110.6 antibody-reactive N-acetylglucosamine (GlcNAc) epitopes on the O-mannosylated α-dystroglycan (α-DG). Using the antibody, we show that mutations of GTDC2 identified in Walker–Warburg syndrome and alanine-substitution of conserved residues between GTDC2 and EGF domain O-GlcNAc transferase resulted in decreased glycosylation. Moreover, GTDC2-modified GlcNAc epitopes are localized in the endoplasmic reticulum (ER). These data suggested that GTDC2 is a novel glycosyltransferase catalyzing GlcNAcylation of O-mannosylated α-DG in the ER. CTD110.6 antibody may be useful to detect a specific form of GlcNAcylated O-mannose and to analyze defective O-glycosylation in α-dystroglycanopathies.  相似文献   
3.
An in-depth proteomic study of sheep milk whey is reported and compared to the data available in the literature for the cow whey proteome. A combinatorial peptide ligand library kit (ProteoMiner) was used to normalize protein abundance in the sheep whey proteome followed by an in-gel digest of a 1D-PAGE display and an in-solution digestion followed by OFFGEL isoelectric focusing fractionation. The peptide fractions obtained were then analyzed by LC-MS/MS. This enabled identification of 669 proteins in sheep whey that, to our knowledge, is the largest inventory of sheep whey proteins identified to date. A comprehensive list of cow whey proteins currently available in the literature (783 proteins from unique genes) was assembled and compared to the sheep whey proteome data obtained in this study (606 proteins from unique genes). This comparison revealed that while the 233 proteins shared by the two species were significantly enriched for immune and inflammatory responses in gene ontology analysis, proteins only found in sheep whey in this study were identified that take part in both cellular development and immune responses, whereas proteins only found in cow whey in this study were identified to be associated with metabolism and cellular growth.  相似文献   
4.
Dystroglycan is a central component of dystrophin-glycoprotein complex that links extracellular matrix and cytoskeleton in skeletal muscle. Although dystrophic chicken is well established as an animal model of human muscular dystrophy, the pathomechanism leading to muscular degeneration remains unknown. We show here that glycosylation and laminin-binding activity of alpha-dystroglycan (alpha-DG) are defective in dystrophic chicken. Extensive glycan structural analysis reveals that Galbeta1-3GalNAc and GalNAc residues are increased while Siaalpha2-3Gal structure is reduced in alpha-DG of dystrophic chicken. These results implicate aberrant glycosylation of alpha-DG in the pathogenesis of muscular degeneration in this model animal of muscular dystrophy.  相似文献   
5.
The recent identification of mutations in genes encoding demonstrated or putative glycosyltransferases has revealed a novel mechanism for congenital muscular dystrophy. Hypoglycosylated alpha-dystroglycan (alpha-DG) is commonly seen in Fukuyama-type congenital muscular dystrophy (FCMD), muscle-eye-brain disease (MEB), Walker-Warburg syndrome (WWS), and Large(myd) mice. POMGnT1 and POMTs, the gene products responsible for MEB and WWS, respectively, synthesize unique O-mannose sugar chains on alpha-DG. The function of fukutin, the gene product responsible for FCMD, remains undetermined. Here we show that fukutin co-localizes with POMGnT1 in the Golgi apparatus. Direct interaction between fukutin and POMGnT1 was confirmed by co-immunoprecipitation and two-hybrid analyses. The transmembrane region of fukutin mediates its localization to the Golgi and participates in the interaction with POMGnT1. Y371C, a missense mutation found in FCMD, retains fukutin in the ER and also redirects POMGnT1 to the ER. Finally, we demonstrate reduced POMGnT1 enzymatic activity in transgenic knock-in mice carrying the retrotransposal insertion in the fukutin gene, the prevalent mutation in FCMD. From these findings, we propose that fukutin forms a complex with POMGnT1 and may modulate its enzymatic activity.  相似文献   
6.
Protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) is an enzyme that transfers N-acetylglucosamine to O-mannose of glycoproteins. Mutations of the POMGnT1 gene cause muscle–eye–brain (MEB) disease. To obtain a better understanding of the pathogenesis of MEB disease, we mutated the POMGnT1 gene in mice using a targeting technique. The mutant muscle showed aberrant glycosylation of α-DG, and α-DG from mutant muscle failed to bind laminin in a binding assay. POMGnT1?/? muscle showed minimal pathological changes with very low-serum creatine kinase levels, and had normally formed muscle basal lamina, but showed reduced muscle mass, reduced numbers of muscle fibers, and impaired muscle regeneration. Importantly, POMGnT1?/? satellite cells proliferated slowly, but efficiently differentiated into multinuclear myotubes in vitro. Transfer of a retrovirus vector-mediated POMGnT1 gene into POMGnT1?/? myoblasts completely restored the glycosylation of α-DG, but proliferation of the cells was not improved. Our results suggest that proper glycosylation of α-DG is important for maintenance of the proliferative activity of satellite cells in vivo.  相似文献   
7.
Walker-Warburg syndrome, caused by mutations in protein O-mannosyltransferase-1 (POMT1), is an autosomal recessive disorder characterized by severe brain malformation, muscular dystrophy, and structural eye abnormalities. As humans have a second POMT, POMT2, we cloned each Drosophila ortholog of the human POMT genes and carried out RNA interference (RNAi) knock-down to investigate the function of these proteins in vivo. Drosophila POMT2 (dPOMT2) RNAi mutant flies showed a "twisted abdomen phenotype," in which the abdomen is twisted 30-60 degrees , similar to the dPOMT1 mutant. Moreover, dPOMT2 interacted genetically with dPOMT1, suggesting that the dPOMTs function in collaboration with each other in vivo. We expressed dPOMTs in Sf21 cells and measured POMT activity. dPOMT2 transferred a mannose to the dystroglycan protein only when it was coexpressed with dPOMT1. Likewise, dPOMT1 showed POMT activity only when coexpressed with dPOMT2, and neither dPOMT showed any activity by itself. Each dPOMT RNAi fly totally reduced POMT activity, despite the specific reduction in the level of each dPOMT mRNA. The expression pattern of dPOMT2 mRNA was found to be similar to that of dPOMT1 mRNA using whole mount in situ hybridization. These results demonstrate that the two dPOMTs function as a protein O-mannosyltransferase in association with each other, in vitro and in vivo, to generate and maintain normal muscle development.  相似文献   
8.
Walker-Warburg syndrome (WWS) is an autosomal recessive developmental disorder characterized by congenital muscular dystrophy, brain malformation, and structural eye abnormalities. WWS is due to defects in protein O-mannosyltransferase 1 (POMT1), which catalyzes the transfer of mannose to protein to form O-mannosyl glycans. POMT1 has been shown to require co-expression of another homologue, POMT2, to have activity. In the present study, mutations in POMT1 genes observed in patients with WWS were duplicated by site-directed mutagenesis. The mutant genes were co-expressed with POMT2 in Sf9 cells and assayed for protein O-mannosyltransferase activity. Expression of all mutant proteins was confirmed by Western blot, but the recombinant proteins did not show any protein O-mannosyltransferase activity. The results indicate that mutations in the POMT1 gene result in a defect of protein O-mannosylation in WWS patients. This may cause failure of binding between alpha-dystroglycan and laminin or other molecules in the extracellular matrix and interrupt normal muscular function and migration of neurons in developing brain.  相似文献   
9.
Muscle-eye-brain disease (MEB), an autosomal recessive disorder, is characterized by congenital muscular dystrophy, brain malformation, and ocular abnormalities. Previously, we found that MEB is caused by mutations in the gene encoding the protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase 1 (POMGnT1), which is responsible for the formation of the GlcNAcbeta1-2Man linkage of O-mannosyl glycan. Although 13 mutations have been identified in patients with MEB, only the protein with the most frequently observed splicing site mutation has been studied. This protein was found to have no activity. Here, we expressed the remaining mutant POMGnT1s and found that none of them had any activity. These results clearly demonstrate that MEB is inherited as a loss-of-function of POMGnT1.  相似文献   
10.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates cellular glucose uptake by decreasing the apparent K(m) for substrate transport through facilitative glucose transporters on the plasma membrane. Little is known about this signal transduction pathway and the role of the alpha subunit of the GM-CSF receptor (alpha GMR) in modulating transporter activity. We examined the function of phosphatidylinositol 3-kinase (PI 3-kinase) in GM-CSF-stimulated glucose uptake and found that PI 3-kinase inhibitors, wortmannin and LY294002, completely blocked the GM-CSF-dependent increase of glucose uptake in Xenopus oocytes expressing the low affinity alpha GMR and in human cells expressing the high affinity alpha beta GMR complex. We identified a Src homology 3 domain-binding motif in alpha GMR at residues 358-361 as a potential interaction site for the PI 3-kinase regulatory subunit, p85. Physical evidence for p85 binding to alpha GMR was obtained by co-immunoprecipitation with antibodies to alpha GMR and p85, and an alpha GMR mutant with alteration of the Src homology 3 binding domain lost the ability to bind p85. Experiments with a construct eliminating most of the intracellular portion of alpha GMR showed a 50% reduction in GM-CSF-stimulated glucose uptake with residual activity blocked by wortmannin. Searching for a proximally generated diffusible factor capable of activating PI 3-kinase, we identified hydrogen peroxide (H(2)O(2)), generated by ligand or antibody binding to alpha GMR, as the initiating factor. Catalase treatment abrogated GM-CSF- or anti-alpha GMR antibody-stimulated glucose uptake in alpha GMR-expressing oocytes, and H(2)O(2) activated PI 3-kinase and led to some stimulation of glucose uptake in uninjected oocytes. Human myeloid cell lines and primary explant human lymphocytes expressing high affinity GM-CSF receptors responded to alpha GMR antibody with increased glucose uptake. These results identify the early events in the stimulation of glucose uptake by GM-CSF as involving local H(2)O(2) generation and requiring PI 3-kinase activation. Our findings also provide a mechanistic explanation for signaling through the isolated alpha subunit of the GM-CSF receptor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号