首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
  39篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有39条查询结果,搜索用时 8 毫秒
1.
2.
The monoclonal antibody (mAb) industry is witnessing unprecedented growth, with an increasing range of new molecules and biosimilars as well as disease targets approved than ever before. Competition necessitates pharmaceutical companies to reduce development/production costs and time‐to‐market. To this aim, mathematical modeling can aid traditional experiment‐only‐based process development by reducing the design space, integrating scales, and assisting in identifying optimal operating conditions in less time and with lower expense. Mathematical models have been employed by other industries for control and optimization purposes and are important decisional tools for testing scenarios, process configurations, operating conditions, etc. Herein, a predictive, experimentally validated mathematical model that captures cellular metabolism and growth with cell cycle, cell death (apoptosis), and mAb production in GS–NS0 cells is presented. The model utilizes cellular, metabolic, and gene expression data, highlighting how multiple data sources can be integrated in one tool with the aim of optimizing mammalian cell bioprocessing.  相似文献   
3.
4.
Apoptosis is a form of programmed and controlled cell death that accounts for the majority of cellular death in bioprocesses. Cell death affects culture longevity and product quality; it is instigated by several stresses experienced by the cells within a bioreactor. Understanding the factors that cause apoptosis as well as developing strategies that can protect cells is crucial for robust bioprocess development. This review aims to a) address apoptosis from a bioprocess perspective; b) describe the significant apoptotic mechanisms linking them to the most relevant stresses encountered in bioreactors; c) discuss the design of operating conditions in order to avoid cell death; d) focus on industrially relevant cell lines; and e) present anti-apoptosis strategies including cell engineering and model-based optimization of bioprocesses. In addition, the importance of apoptosis in quality-by-design bioprocess development from clone screening to production scale are highlighted.  相似文献   
5.
Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g., T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological, and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo.  相似文献   
6.
Mammalian cell cultures are intrinsically heterogeneous at different scales (molecular to bioreactor). The cell cycle is at the centre of capturing heterogeneity since it plays a critical role in the growth, death, and productivity of mammalian cell cultures. Current cell cycle models use biological variables (mass/volume/age) that are non-mechanistic, and difficult to experimentally determine, to describe cell cycle transition and capture culture heterogeneity. To address this problem, cyclins—key molecules that regulate cell cycle transition—have been utilized. Herein, a novel integrated experimental-modelling platform is presented whereby experimental quantification of key cell cycle metrics (cell cycle timings, cell cycle fractions, and cyclin expression determined by flow cytometry) is used to develop a cyclin and DNA distributed model for the industrially relevant cell line, GS-NS0. Cyclins/DNA synthesis rates were linked to stimulatory/inhibitory factors in the culture medium, which ultimately affect cell growth. Cell antibody productivity was characterized using cell cycle-specific production rates. The solution method delivered fast computational time that renders the model’s use suitable for model-based applications. Model structure was studied by global sensitivity analysis (GSA), which identified parameters with a significant effect on the model output, followed by re-estimation of its significant parameters from a control set of batch experiments. A good model fit to the experimental data, both at the cell cycle and viable cell density levels, was observed. The cell population heterogeneity of disturbed (after cell arrest) and undisturbed cell growth was captured proving the versatility of the modelling approach. Cell cycle models able to capture population heterogeneity facilitate in depth understanding of these complex systems and enable systematic formulation of culture strategies to improve growth and productivity. It is envisaged that this modelling approach will pave the model-based development of industrial cell lines and clinical studies.  相似文献   
7.
A cDNA clone, IWU-1, was cloned from human bone marrow. Its putative open reading frame encoded a protein of 115 amino acids with a calculated molecular mass of 12.9 kDa. The deduced amino acid sequence exhibited high homology (>68%) to members of the ATP1gamma1/PLM/MAT8 family of single transmembrane proteins, primarily in the region containing the putative transmembrane domain. The sequence at the amino-terminal side exhibited high homology (>61%) to the cytoplasmic region of the angiotensin II type 1 receptors.  相似文献   
8.
Hematopoietic stem cells require a unique microenvironment in order to sustain blood cell formation1; the bone marrow (BM) is a complex three-dimensional (3D) tissue wherein hematopoiesis is regulated by spatially organized cellular microenvironments termed niches2-4. The organization of the BM niches is critical for the function or dysfunction of normal or malignant BM5. Therefore a better understanding of the in vivo microenvironment using an ex vivo mimicry would help us elucidate the molecular, cellular and microenvironmental determinants of leukemogenesis6.Currently, hematopoietic cells are cultured in vitro in two-dimensional (2D) tissue culture flasks/well-plates7 requiring either co-culture with allogenic or xenogenic stromal cells or addition of exogenous cytokines8. These conditions are artificial and differ from the in vivo microenvironment in that they lack the 3D cellular niches and expose the cells to abnormally high cytokine concentrations which can result in differentiation and loss of pluripotency9,10.Herein, we present a novel 3D bone marrow culture system that simulates the in vivo 3D growth environment and supports multilineage hematopoiesis in the absence of exogenous growth factors. The highly porous scaffold used in this system made of polyurethane (PU), facilitates high-density cell growth across a higher specific surface area than the conventional monolayer culture in 2D11. Our work has indicated that this model supported the growth of human cord blood (CB) mononuclear cells (MNC)12 and primary leukemic cells in the absence of exogenous cytokines. This novel 3D mimicry provides a viable platform for the development of a human experimental model to study hematopoiesis and to explore novel treatments for leukemia.  相似文献   
9.
Bioprocess and Biosystems Engineering - Bacterial cellulose (BC) exhibits unique properties such as high purity compared to plant-based cellulose; however, commercial production of BC has remained...  相似文献   
10.
Developments in bioprocessing technology play an important role for overcoming challenges in cardiac tissue engineering. To this end, our laboratory has developed a novel rotary perfused bioreactor for supporting three-dimensional cardiac tissue engineering. The dynamic culture environments provided by our novel perfused rotary bioreactor and/or the high-aspect rotating vessel produced constructs with higher viability and significantly higher cell numbers (up to 4 × 105 cells/bead) than static tissue culture flasks. Furthermore, cells in the perfused rotary bioreactor showed earlier gene expressions of cardiac troponin-T, α- and β-myosin heavy chains with higher percentages of cardiac troponin-I-positive cells and better uniformity of sacromeric α-actinin expression. A dynamic and perfused environment, as provided by this bioreactor, provides a superior culture performance in cardiac differentiation for embryonic stem cells particularly for larger 3D constructs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号