首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1183篇
  免费   26篇
  1209篇
  2024年   6篇
  2023年   11篇
  2022年   21篇
  2021年   41篇
  2020年   22篇
  2019年   21篇
  2018年   38篇
  2017年   29篇
  2016年   44篇
  2015年   58篇
  2014年   74篇
  2013年   111篇
  2012年   116篇
  2011年   109篇
  2010年   75篇
  2009年   54篇
  2008年   68篇
  2007年   67篇
  2006年   56篇
  2005年   45篇
  2004年   36篇
  2003年   36篇
  2002年   23篇
  2001年   10篇
  2000年   3篇
  1999年   8篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有1209条查询结果,搜索用时 0 毫秒
1.
Hydrophilic acylated surface proteins (HASPs) are acidic surface proteins which get localized on the surface of Leishmania parasite during infective stages through a “non-classical” pathway. In this study, we report the heterologous expression and purification of Leishmania donovani HASPA (r-LdHASPA) in E. coli system and its partial characterization. The structural aspects of the purified protein were analyzed using CD spectroscopy and modeling studies which indicate that r-LdHASPA consists of random coils. Studies in mouse macrophage RAW264.7 cell lines indicate that r-LdHASPA enhances reactive oxygen species (ROS) production. Co-immunoprecipitation (IP) studies indicate that r-LdHASPA interacts with certain macrophage proteins which however could not be identified unambiguously. The present study provides key insights into the structural and functional aspects of an important Leishmania protein, HASPA, which we believe could be useful for further research on vaccine/drug development.  相似文献   
2.
Cheriyan M  Toone EJ  Fierke CA 《Biochemistry》2012,51(8):1658-1668
The substrate specificity of enzymes is frequently narrow and constrained by multiple interactions, limiting the use of natural enzymes in biocatalytic applications. Aldolases have important synthetic applications, but the usefulness of these enzymes is hampered by their narrow reactivity profile with unnatural substrates. To explore the determinants of substrate selectivity and alter the specificity of Escherichia coli 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, we employed structure-based mutagenesis coupled with library screening of mutant enzymes localized to the bacterial periplasm. We identified two active site mutations (T161S and S184L) that work additively to enhance the substrate specificity of this aldolase to include catalysis of retro-aldol cleavage of (4S)-2-keto-4-hydroxy-4-(2'-pyridyl)butyrate (S-KHPB). These mutations improve the value of k(cat)/K(M)(S-KHPB) by >450-fold, resulting in a catalytic efficiency that is comparable to that of the wild-type enzyme with the natural substrate while retaining high stereoselectivity. Moreover, the value of k(cat)(S-KHPB) for this mutant enzyme, a parameter critical for biocatalytic applications, is 3-fold higher than the maximal value achieved by the natural aldolase with any substrate. This mutant also possesses high catalytic efficiency for the retro-aldol cleavage of the natural substrate, KDPG, and a >50-fold improved activity for cleavage of 2-keto-4-hydroxy-octonoate, a nonfunctionalized hydrophobic analogue. These data suggest a substrate binding mode that illuminates the origin of facial selectivity in aldol addition reactions catalyzed by KDPG and 2-keto-3-deoxy-6-phosphogalactonate aldolases. Furthermore, targeting mutations to the active site provides a marked improvement in substrate selectivity, demonstrating that structure-guided active site mutagenesis combined with selection techniques can efficiently identify proteins with characteristics that compare favorably to those of naturally occurring enzymes.  相似文献   
3.
4.
    
Encapsulation technology is an exciting and rapidly growing area of biotechnological research. This has drawn tremendous attention in recent years because of its wide use in conservation and delivery of tissue cultured plants of commercial and economic importance. Production of synthetic seeds by encapsulating somatic embryos, shoot buds or any other meristmatic tissue helps in minimizing the cost of micropropagated plantlets for commercialization and final delivery. In most of fruit crops, seed propagation has not been successful because of heterozygosity of seeds, minute seed size, presence of reduced endosperm, low germination rate, and also some are having seedless varieties. Many species have desiccation-sensitive intermediate or recalcitrant seeds and can be stored for only a few weeks or months. Under these circumstances, increasing interest has been shown recently to use encapsulation technology for propagation and conservation. Many fruit plants are studied worldwide for breeding, genetic engineering, propagation, and pharmaceutical purposes. In this context, synthetic seeds would be more applicable in exchange of elite and axenic plant material between laboratories and extension centers due to small bead size and ease in handling. Due to these advantages, interest in using encapsulation technology has continuously been increasing in several fruit plant species. The purpose of this review is to focus upon current information on development of synthetic seeds in several fruit crops.  相似文献   
5.
    
A series of conformationally constrained analogues of Linezolid were synthesised by employing a tandem SN(2) and SNAr reaction as the key step and tested for antibacterial activity. While the hexahydroazolo-quinoxaline compounds were inactive, the tetrahydroazolo-benzothiazine compounds exhibited interesting antibacterial activity. The introduction of fluorine in the aromatic ring further made the compounds more potent in acetamide compounds resulting in an interesting analogue 32. However, the introduction of fluorine (analogue 34) on the already potent non-fluorine thiocarbamate 21 did not have any influence on the activity.  相似文献   
6.
7.
The classical tachykinin substance P (SP) has numerous potent neuroimmunomodulatory effects on all kinds of airway functions. Belonging to a class of neuromediators targeting not only residential cells but also inflammatory cells, studying SP provides important information on the bidirectional linkage between how neural function affects inflammatory events and, in turn, how inflammatory responses alter neural activity. Therefore, this study aimed to investigate the effect of local burn injury on inducing distant organ pulmonary SP release and its relevance to lung injury. Our results show that burn injury in male BALB/c mice subjected to 30% total body surface area full thickness burn augments significant production of SP, preprotachykinin-A gene expression, which encodes for SP, and biological activity of SP-neurokinin-1 receptor (NK1R) signaling. Furthermore, the enhanced SP-NK1R response correlates with exacerbated lung damage after burn as evidenced by increased microvascular permeability, edema, and neutrophil accumulation. The development of heightened inflammation and lung damage was observed along with increased proinflammatory IL-1beta, TNF-alpha, and IL-6 mRNA and protein production after injury in lung. Chemokines MIP-2 and MIP-1alpha were markedly increased, suggesting the active role of SP-induced chemoattractants production in trafficking inflammatory cells. More importantly, administration of L703606, a specific NK1R antagonist, 1 h before burn injury significantly disrupted the SP-NK1R signaling and reversed pulmonary inflammation and injury. The present findings show for the first time the role of SP in contributing to exaggerated pulmonary inflammatory damage after burn injury via activation of NK1R signaling.  相似文献   
8.
    
In vivo, 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible, stereospecific retro-aldol cleavage of KDPG to pyruvate and D-glyceraldehyde-3-phosphate. The enzyme is a lysine-dependent (Class I) aldolase that functions through the intermediacy of a Schiff base. Here, we propose a mechanism for this enzyme based on crystallographic studies of wild-type and mutant aldolases. The three dimensional structure of KDPG aldolase from the thermophile Thermotoga maritima was determined to 1.9A. The structure is the standard alpha/beta barrel observed for all Class I aldolases. At the active site Lys we observe clear density for a pyruvate Schiff base. Density for a sulfate ion bound in a conserved cluster of residues close to the Schiff base is also observed. We have also determined the structure of a mutant of Escherichia coli KDPG aldolase in which the proposed general acid/base catalyst has been removed (E45N). One subunit of the trimer contains density suggesting a trapped pyruvate carbinolamine intermediate. All three subunits contain a phosphate ion bound in a location effectively identical to that of the sulfate ion bound in the T. maritima enzyme. The sulfate and phosphate ions experimentally locate the putative phosphate binding site of the aldolase and, together with the position of the bound pyruvate, facilitate construction of a model for the full-length KDPG substrate complex. The model requires only minimal positional adjustments of the experimentally determined covalent intermediate and bound anion to accommodate full-length substrate. The model identifies the key catalytic residues of the protein and suggests important roles for two observable water molecules. The first water molecule remains bound to the enzyme during the entire catalytic cycle, shuttling protons between the catalytic glutamate and the substrate. The second water molecule arises from dehydration of the carbinolamine and serves as the nucleophilic water during hydrolysis of the enzyme-product Schiff base. The second water molecule may also mediate the base-catalyzed enolization required to form the carbon nucleophile, again bridging to the catalytic glutamate. Many aspects of this mechanism are observed in other Class I aldolases and suggest a mechanistically and, perhaps, evolutionarily related family of aldolases distinct from the N-acetylneuraminate lyase (NAL) family.  相似文献   
9.

Objectives

There has been increased interest in the possible role of human cytomegalovirus (HCMV) in carcinogenesis during the last decade. HCMV seroprevalence was enhanced in patients with hepatocellular carcinoma (HCC) but a possible relationship between HCC and HCMV infection remained to be assessed. The aim of this work was to investigate the pro-tumor influence of HCMV on primary human hepatocytes (PHH) and HepG2 cells.

Methods

Following infection of PHH and HepG2 cells by two different strains of HCMV, we measured the production of IL-6 in culture supernatants by ELISA and the protein levels of STAT3, pSTAT3, JAK, cyclin D1, survivin, p53, p21, and Mdm2 by western Blotting in infected and uninfected cells. Cell proliferation and transformation were investigated using Ki67Ag expression measurement and soft-agar colony formation assay respectively.

Results

Infection of HepG2 cells and PHH by HCMV resulted in the production of IL-6 and the subsequent activation of the IL-6R-JAK-STAT3 pathway. HCMV increased the expression of cyclin D1 and survivin. Cell proliferation was enhanced in HepG2 and PHH infected with HCMV, despite a paradoxical overexpression of p53 and p21. More importantly, we observed the formation of colonies in soft agar seeded with PHH infected with HCMV and when we challenged the HepG2 cultures to form tumorspheres, we found that the HCMV-infected cultures formed 2.5-fold more tumorspheres than uninfected cultures.

Conclusion

HCMV activated the IL-6-JAK-STAT3 pathway in PHH and HepG2 cells, favored cellular proliferation, induced PHH transformation and enhanced HepG2 tumorsphere formation. Our observations raise the possibility that HCMV infection might be involved in the genesis of hepatocellular carcinoma.  相似文献   
10.
Determination of biological activity and its comparison with clinical behavior is important in the quality assessment of therapeutic glycoproteins. In vivo studies are usually employed for evaluating bioactivity of these glycomolecules. However, alternative methods are required to simplify the bioassay and avoid ethical issues associated with in vivo studies. Negatively charged sialic acid residues are known to be critical for in vivo bioactivity of rHuEPO. To address this need, we employed the human acute myeloid leukemia cell line UT-7 for the determination of proliferative stimulation induced by rHuEPO. Relative potencies of various intact and sugar-trimmed rHuEPO preparations were estimated using the International Standard for Human r-DNA derived EPO (87/684) as a reference for bioactivity. The cellular response was measured with a multi-channel photometer using a colorimetric microassay, based on the metabolism of the Resazurin sodium by cell viability. For a resourceful probing of physiological features of rHuEPO with significance, we obtained partly or completely desialylated rHuEPO digested by the neuraminidase enzyme without degradation of carbohydrates. Two-fold higher specific activity was shown by asialoerythropoietin in in vitro analysis compared with the sialoerythropoietin. Further, computational studies were also carried out to construct the 3D model of the erythropoietin (EPO) protein structure using standard comparative modeling methods. The quality of the model was validated using Procheck and protein structure analysis (ProSA) server tools. N–glycan units were constructed; moreover, EPO protein was glycosylated at potential glycosylation amino acid residue sites. The method described should be suitable for potency assessments of pharmaceutical formulations of rHuEPO (European Pharmacopeia, 2016).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号