首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2022年   1篇
  2019年   1篇
  2014年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.

Pinus are among the highly invasive species that have spread outside their plantation area after their introduction in the Southern Hemisphere. The case of Pinus kesiya invasion is observed in the high plateau of Madagascar, inside the sclerophyll Tapia woodland which is dominated by the endemic Uapaca bojeri tree species. The analysis of this invasion was carried out using 375 plots of 100 m2 each in Tapia woodland. Data on the vegetation structure, the plot characteristics and the propagule pressure were collected. We recorded a total of 740 pines distributed in 29.8% of the plots. The generalized linear model built on P. kesiya at the three different life stages allowed us to highlight a different explicative variable on the species’ presence and abundance separately. The factors explaining pine occurrence varied according to the pine life stage. In the seedling stage, the distance of the plot from the propagule source combined with the longitudinal position of the plot explained 18% of the pine presence. In the sapling and adult stages, the vegetation structure was the main important factor (22% and 11% of variation explained regarding presence and abundance). The frequency of U. bojeri and the degree of disturbance were the most important factors characterizing this vegetation structure. Based on these results, a strategy to control pine invasion in the Tapia woodland may focus on enrichment with U. bojeri and limitation of the plantation of P. kesiya in proximity.

  相似文献   
2.
3.
Clostridium botulinum is a dangerous pathogen that forms the highly potent botulinum toxin, which when ingested causes a deadly neuroparalytic disease. The closely related Clostridium sporogenes is occasionally pathogenic, frequently associated with food spoilage and regarded as the non-toxigenic equivalent of Group I C. botulinum. Both species form highly resistant spores that are ubiquitous in the environment and which, under favourable growth conditions germinate to produce vegetative cells. To improve the control of botulinum neurotoxin-forming clostridia, it is imperative to comprehend the mechanisms by which spores germinate. Germination is initiated following the recognition of small molecules (germinants) by a specific germinant receptor (GR) located in the spore inner membrane. The present study precisely defines clostridial GRs, germinants and co-germinants. Group I C. botulinum ATCC3502 contains two tricistronic and one pentacistronic GR operons, while C. sporogenes ATCC15579 has three tricistronic and one tetracistronic GR operons. Insertional knockout mutants, allied with characterisation of recombinant GRs shows for the first time that amino acid stimulated germination in C. botulinum requires two tri-cistronic encoded GRs which act in synergy and cannot function individually. Spore germination in C. sporogenes requires one tri-cistronic GR. Two other GRs form part of a complex involved in controlling the rate of amino-acid stimulated germination. The suitability of using C. sporogenes as a substitute for C. botulinum in germination studies and food challenge tests is discussed.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号