排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Anna Herland Ben M. Maoz Edward A. FitzGerald Thomas Grevesse Charles Vidoudez Sean P. Sheehy Nikita Budnik Stephanie Dauth Robert Mannix Bogdan Budnik Kevin Kit Parker Donald E. Ingber 《Advanced Biosystems》2020,4(9)
The functional state of the neurovascular unit (NVU), composed of the blood–brain barrier and the perivasculature that forms a dynamic interface between the blood and the central nervous system (CNS), plays a central role in the control of brain homeostasis and is strongly affected by CNS drugs. Human primary brain microvascular endothelium, astrocyte, pericyte, and neural cell cultures are often used to study NVU barrier functions as well as drug transport and efficacy; however, the proteomic and metabolomic responses of these different cell types are not well characterized. Culturing each cell type separately, using deep coverage proteomic analysis and characterization of the secreted metabolome, as well as measurements of mitochondrial activity, the responses of these cells under baseline conditions and when exposed to the NVU‐impairing stimulant methamphetamine (Meth) are analyzed. These studies define the previously unknown metabolic and proteomic profiles of human brain pericytes and lead to improved characterization of the phenotype of each of the NVU cell types as well as cell‐specific metabolic and proteomic responses to Meth. 相似文献
2.
Marjorie Maillet Jennifer Davis Mannix Auger-Messier Allen York Hanna Osinska Jér?me Piquereau John N. Lorenz Jeffrey Robbins Renée Ventura-Clapier Jeffery D. Molkentin 《The Journal of biological chemistry》2010,285(9):6716-6724
Calcineurin is a protein phosphatase that is uniquely regulated by sustained increases in intracellular Ca2+ following signal transduction events. Calcineurin controls cellular proliferation, differentiation, apoptosis, and inducible gene expression following stress and neuroendocrine stimulation. In the adult heart, calcineurin regulates hypertrophic growth of cardiomyocytes in response to pathologic insults that are associated with altered Ca2+ handling. Here we determined that calcineurin signaling is directly linked to the proper control of cardiac contractility, rhythm, and the expression of Ca2+-handling genes in the heart. Our approach involved a cardiomyocyte-specific deletion using a CnB1-LoxP-targeted allele in mice and three different cardiac-expressing Cre alleles/transgenes. Deletion of calcineurin with the Nkx2.5-Cre knock-in allele resulted in lethality at 1 day after birth due to altered right ventricular morphogenesis, reduced ventricular trabeculation, septal defects, and valvular overgrowth. Slightly later deletion of calcineurin with the α-myosin heavy chain Cre transgene resulted in lethality in early mid adulthood that was characterized by substantial reductions in cardiac contractility, severe arrhythmia, and reduced myocyte content in the heart. Young calcineurin heart-deleted mice died suddenly after pressure overload stimulation or neuroendocrine agonist infusion, and telemetric monitoring of older mice showed arrhythmia leading to sudden death. Mechanistically, loss of calcineurin reduced expression of key Ca2+-handling genes that likely lead to arrhythmia and reduced contractility. Loss of calcineurin also directly impacted cellular proliferation in the postnatal developing heart. These results reveal multiple mechanisms whereby calcineurin regulates cardiac development and myocyte contractility. 相似文献
3.
Alexandre Murza Kien Trn Laurent Bruneau‐Cossette Olivier Lesur Mannix Auger‐Messier Pierre Lavigne Philippe Sarret ric Marsault 《Peptide Science》2019,111(1)
The apelinergic system emerges as an important regulator of cardiovascular functions via its actions on the heart, vasculature, and kidney. It also possesses additional beneficial properties, via its actions on the pancreas and skeletal muscle, on type 2 diabetes. The apelinergic system distinguishes itself by the presence of two structurally distinct sets of endogenous ligands, the Apelins (–13, −17, and −36) and Elabela, which both activate the apelin (APJ) receptor. In the past decade, numerous peptidic ligands have been used to better understand the structure–activity relationship of apelin (and more recently Elabela), providing important tools to rationalize how ligand modifications impact receptor structure and dynamics as well as its downstream signaling. The recently disclosed structure of the apelin receptor in complex with an analogue of apelin‐17 provides an important tool in this quest. In this review, we first summarize the physiopharmacology of the apelinergic system, then, review existing knowledge on the various ligands of the apelin receptor with an emphasis on peptidic ligands, although small molecules are covered as well. Throughout this work, we tried to integrate existing knowledge of ligands’ pharmacological profiles with structure and signaling profile. 相似文献
4.
Pérodin J Deraët M Auger-Messier M Boucard AA Rihakova L Beaulieu ME Lavigne P Parent JL Guillemette G Leduc R Escher E 《Biochemistry》2002,41(48):14348-14356
The human angiotensin II type 1 receptor (hAT(1)) was photolabeled with a high-affinity radiolabeled photoreactive analogue of AngII, (125)I-[Sar(1), Val(5), p-Benzoyl-L-phenylalanine(8)]AngII ((125)I-[Sar(1),Bpa(8)]AngII). Chemical cleavage with CNBr produced a 7 kDa fragment (285-334) of the C-terminal portion of the hAT(1). Manual Edman radiosequencing of photolabeled, per-acetylated, and CNBr-fragmented receptor showed that ligand incorporation occurred through Phe(293) and Asn(294) within the seventh transmembrane domain of the hAT(1). Receptor mutants with Met introduced at the presumed contact residues, F293M and N294M, were photolabeled and then digested with CNBr. SDS-PAGE analysis of those digested mutant receptors confirmed the contact positions 293 and 294 through ligand release induced by CNBr digestion. Additional receptor mutants with Met residues introduced into the N- and C-terminal proximity of those residues 293 and 294 of the hAT(1) produced, upon photolabeling and CNBr digestion, fragmentation patterns compatible only with the above contact residues. These data indicate that the C-terminal residue of AngII interacts with residues 293 and 294 of the seventh transmembrane domain of the human AT(1) receptor. Taking into account a second receptor-ligand contact at the second extracellular loop and residue 3 of AngII (Boucard, A. A., Wilkes, B. C., Laporte, S. A., Escher, E., Guillemette, G., and Leduc, R. (2000) Biochemistry 39, 9662-70) the Ang II molecule must adopt an extended structure in the AngII binding pocket. 相似文献
5.
6.
Justin Werfel Silva Krause Ashley G. Bischof Robert J. Mannix Heather Tobin Yaneer Bar-Yam Robert M. Bellin Donald E. Ingber 《PloS one》2013,8(10)
Changes in extracellular matrix (ECM) structure or mechanics can actively drive cancer progression; however, the underlying mechanism remains unknown. Here we explore whether this process could be mediated by changes in cell shape that lead to increases in genetic noise, given that both factors have been independently shown to alter gene expression and induce cell fate switching. We do this using a computer simulation model that explores the impact of physical changes in the tissue microenvironment under conditions in which physical deformation of cells increases gene expression variability among genetically identical cells. The model reveals that cancerous tissue growth can be driven by physical changes in the microenvironment: when increases in cell shape variability due to growth-dependent increases in cell packing density enhance gene expression variation, heterogeneous autonomous growth and further structural disorganization can result, thereby driving cancer progression via positive feedback. The model parameters that led to this prediction are consistent with experimental measurements of mammary tissues that spontaneously undergo cancer progression in transgenic C3(1)-SV40Tag female mice, which exhibit enhanced stiffness of mammary ducts, as well as progressive increases in variability of cell-cell relations and associated cell shape changes. These results demonstrate the potential for physical changes in the tissue microenvironment (e.g., altered ECM mechanics) to induce a cancerous phenotype or accelerate cancer progression in a clonal population through local changes in cell geometry and increased phenotypic variability, even in the absence of gene mutation. 相似文献
7.
Palange P.; Galassetti P.; Mannix E. T.; Farber M. O.; Manfredi F.; Serra P.; Carlone S. 《Journal of applied physiology》1995,78(6):2228-2234
8.
Mannix E. T.; Boska M. D.; Galassetti P.; Burton G.; Manfredi F.; Farber M. O. 《Journal of applied physiology》1995,78(6):2218-2227
9.
Roberts MA O'Dea J Boyce A Mannix ET 《Journal of strength and conditioning research / National Strength & Conditioning Association》2002,16(2):271-277
Federal law prohibits pre-employment physical examination of firefighter recruits, but these workers must perform intense exercise in arduous environments. Components of physical fitness of rookie firefighters (n = 115; 104 men, mean +/- SD: age = 28.3 +/- 4.3 years; height = 1.76 +/- 0.07 m; weight = 83.2 +/- 13.9 kg; percent body fat = 17 +/- 8%) were measured upon being hired and following a 16-week exercise training program (1 h.d(-1), 3 d.wk(-1)) designed to improve physical fitness. Maximum aerobic capacity (VO2max) was estimated from submaximal cycle ergometry, body composition from skinfold tests, flexibility from a sit and reach test, strength by hand grip dynamometry, and muscle endurance by a push-up test. The results are as follows (*, p 相似文献
10.
Rihakova L Deraët M Auger-Messier M Pérodin J Boucard AA Guillemette G Leduc R Lavigne P Escher E 《Journal of receptor and signal transduction research》2002,22(1-4):297-313
Probing G-protein coupled receptor (GPCR) structures is a priority in the functional and structural understanding of GPCRs. In the past, we have used several approaches around photoaffinity labeling in order to establish contact points between peptide ligands and their cognate receptors. Such contact points are helpful to build reality based molecular models of GPCRs and to elucidate their activation mechanisms. Most studies of peptidergic GPCRs have been done with photolabeling peptides containing the benzophenone moiety as a reputedly non-selective probe. However our recent results are now showing that p-benzoylphenylalanine (Bpa) has some selectivity for Met residues in the receptor protein, reducing the accuracy of this method. Turning a problem into an asset, modified analogues of Bpa, e.g. p,p'-nitrobenzoylphenylalanine (NO2Bpa), display increased selectivity for such Met residues. It means a photoprobe containing such modified benzophenone-moieties does not label a receptor protein unless a Met residue is in the immediate vicinity. This unique property allows us to propose and show the feasibility and utility of a new method for scanning the contact areas of peptidergic GPCRs, the Methionine Proximity Assay (MPA). Putative contact residues of the receptor are exchanged to Met residues by site-directed mutagenesis and are subjected to photoaffinity labeling with such modified benzophenone-containing peptides. Successful incorporation indicates physical proximity of those residues. This principle is established and explored with benzophenone-containing analogues of angiotensin II and the two known human angiotensin II receptors AT1 and AT2, determining contact points in both receptors. This approach has several important advantages over other scanning approaches, e.g., the SCAM procedure, since the MPA-method can be used in the hydrophobic core of receptors. 相似文献