首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   14篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   9篇
  2020年   5篇
  2019年   13篇
  2018年   6篇
  2017年   9篇
  2016年   10篇
  2015年   13篇
  2014年   15篇
  2013年   15篇
  2012年   21篇
  2011年   13篇
  2010年   13篇
  2009年   7篇
  2008年   19篇
  2007年   16篇
  2006年   12篇
  2005年   11篇
  2004年   12篇
  2003年   9篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1981年   2篇
  1979年   1篇
  1972年   2篇
  1969年   1篇
  1967年   2篇
  1965年   1篇
  1962年   1篇
  1960年   1篇
  1957年   1篇
排序方式: 共有276条查询结果,搜索用时 15 毫秒
1.
2.
N. MATHAN, M. PARANI, A. PARIDA AND S. NAIR. 1996. Strains of root-nodulating bacteria isolated from Arachis hypogaea showed physiological characteristics of both fast and slow growers. Random amplified polymorphic DNA (RAPD) markers showed most of the genotypes could be identified using one or two primers; however, cluster analysis based on the number of bands shared by the genotypes showed a homogenous cluster. These strains were halotolerant in nature and have potential for use in saline soil.  相似文献   
3.
Tylophora indica (Burm.f.) Merr (syn. T. asthmatica), is being indiscriminately collected for medicinal use which is not sustainable. Conservation of the species requires information on existing genetic content and its distribution in different populations. In the present study, polymorphism in allozyme and RAPD profiles of five populations were analysed using six enzyme systems and ten random primers. Genetic content in terms of allozymes and RAPDs as revealed by Shannon-Weiner index was more or less same in all the populations. Evenness as calculated from observed diversity (Shannon-Weiner index, H’) and the maximum expected diversity (Hmax) for the allozymes and RAPDs was high for individual populations indicating that the distribution of genetic content was fairly uniform. From the results, it was concluded that collection of few genotypes from geographically distinct locations rather than intensive collection within one or two locations would be representative of the genetic variability present in this species.  相似文献   
4.

The milieu of male germline stem cells (mGSCs) is characterized as a low-oxygen (O2) environment, whereas, their in-vitro expansion is typically performed under normoxia (20–21% O2). The comparative information about the effects of low and normal O2 levels on the growth and differentiation of caprine mGSCs (cmGSCs) is lacking. Thus, we aimed to investigate the functional and multilineage differentiation characteristics of enriched cmGSCs, when grown under hypoxia and normoxia. After enrichment of cmGSCs through multiple methods (differential platting and Percoll-density gradient centrifugation), the growth characteristics of cells [population-doubling time (PDT), viability, proliferation, and senescence], and expression of key-markers of adhesion (β-integrin and E-Cadherin) and stemness (OCT-4, THY-1 and UCHL-1) were evaluated under hypoxia (5% O2) and normoxia (21% O2). Furthermore, the extent of multilineage differentiation (neurogenic, adipogenic, and chondrogenic differentiation) under different culture conditions was assessed. The survival, viability, and proliferation were significantly (p?<?0.05) improved, thus, yielding a significantly (p?<?0.05) higher number of viable cells with larger colonies under hypoxia. Furthermore, the expression of stemness and adhesion markers were distinctly upregulated under lowered O2 conditions. Conversely, the differentiated regions and expression of differentiation-specific genes [C/EBPα (adipogenic), nestin and β-tubulin (neurogenic), and COL2A1 (chondrogenic)] were significantly (p?<?0.05) reduced under hypoxia. Overall, the results demonstrate that culturing cmGSCs under hypoxia augments the growth characteristics and stemness but not the multilineage differentiation of cmGSCs, as compared with normoxia. These data are important to develop robust methodologies for ex-vivo expansion and lineage-committed differentiation of cmGSCs for clinical applications.

  相似文献   
5.
6.
The mitogen-activated protein kinase (MAPK) is characterized by the presence of the T-E-Y, T-D-Y, and T-G-Y motifs in its activation loop region and plays a significant role in regulating diverse cellular responses in eukaryotic organisms. Availability of large-scale genome data in the fungal kingdom encouraged us to identify and analyse the fungal MAPK gene family consisting of 173 fungal species. The analysis of the MAPK gene family resulted in the discovery of several novel activation loop motifs (T-T-Y, T-I-Y, T-N-Y, T-H-Y, T-S-Y, K-G-Y, T-Q-Y, S-E-Y and S-D-Y) in fungal MAPKs. The phylogenetic analysis suggests that fungal MAPKs are non-polymorphic, had evolved from their common ancestors around 1500 million years ago, and are distantly related to plant MAPKs. We are the first to report the presence of nine novel activation loop motifs in fungal MAPKs. The specificity of the activation loop motif plays a significant role in controlling different growth and stress related pathways in fungi. Hence, the presences of these nine novel activation loop motifs in fungi are of special interest.  相似文献   
7.
8.
Males and females share most of their genome and develop many of the same traits. However, each sex frequently has different optimal values for these shared traits, creating intralocus sexual conflict. This conflict has been observed in wild and laboratory populations of insects and affects important evolutionary processes such as sexual selection, the maintenance of genetic variation, and possibly even speciation. Given the broad impacts of intralocus conflict, accurately detecting and measuring it is important. A common way to detect intralocus sexual conflict is to calculate the intersexual genetic correlation for fitness, with negative values suggesting conflict. Here, we highlight a potential confounder of this measure—cytoplasmic incompatibility caused by the intracellular parasite Wolbachia. Infection with Wolbachia can generate negative intersexual genetic correlations for fitness in insects, suggestive of intralocus sexual conflict. This is because cytoplasmic incompatibility reduces the fitness of uninfected females mated to infected males, while uninfected males will not suffer reductions in fitness if they mate with infected females and may even be fitter than infected males. This can lead to strong negative intersexual genetic correlations for fitness, mimicking intralocus conflict. We illustrate this issue using simulations and then present Drosophila simulans data that show how reproductive incompatibilities caused by Wolbachia infection can generate signals of intralocus sexual conflict. Given that Wolbachia infection in insect populations is pervasive, but populations usually contain both infected and uninfected individuals providing scope for cytoplasmic incompatibility, this is an important consideration for sexual conflict research but one which, to date, has been largely underappreciated.  相似文献   
9.
10.
The effects of a range of salinity (0, 100, 200 and 400 mM NaCl) on growth, ion accumulation, photosynthesis and anatomical changes of leaves were studied in the mangrove, Bruguiera parviflora of the family Rhizophoraceae under hydroponically cultured conditions. The growth rates measured in terms of plant height, fresh and dry weight and leaf area were maximal in culture treated with 100 mM NaCl and decreased at higher concentrations. A significant increase of Na+ content of leaves from 46.01 mmol m-2 in the absence of NaCl to 140.55 mmol m-2 in plants treated with 400 mM NaCl was recorded. The corresponding Cl- contents were 26.92 mmol m-2 and 97.89 mmol m-2. There was no significant alteration of the endogenous level of K+ and Fe2+ in leaves. A drop of Ca2+ and Mg2+ content of leaves upon salt accumulation suggests increasing membrane stability and decreased chlorophyll content respectively. Total chlorophyll content decreased from 83.44 g cm-2 in untreated plants to 46.56 g cm-2 in plants treated with 400 mM NaCl, suggesting that NaCl has a limiting effect on photochemistry that ultimately affects photosynthesis by inhibiting chlorophyll synthesis (ca. 50% loss in chlorophyll). Light-saturated rates of photosynthesis decreased by 22% in plants treated with 400 mM NaCl compared with untreated plants. Both mesophyll and stomatal conductance by CO2 diffusion decreased linearly in leaves with increasing salt concentration. Stomatal and mesophyll conductance decreased by 49% and 52% respectively after 45 days in 400 mM NaCl compared with conductance in the absence of NaCl. Scanning electron microscope study revealed a decreased stomatal pore area (63%) in plants treated with 400 mM NaCl compared with untreated plants, which might be responsible for decreased stomatal conductance. Epidermal and mesophyll thickness and intercellular spaces decreased significantly in leaves after treatment with 400 mM NaCl compared with untreated leaves. These changes in mesophyll anatomy might have accounted for the decreased mesophyll conductance. We conclude that high salinity reduces photosynthesis in leaves of B. parviflora, primarily by reducing diffusion of CO2 to the chloroplast, both by stomatal closure and by changes in mesophyll structure, which decreased the conductance to CO2 within the leaf, as well as by affecting the photochemistry of the leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号