首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   606篇
  免费   49篇
  2023年   3篇
  2022年   3篇
  2021年   18篇
  2020年   5篇
  2019年   4篇
  2018年   6篇
  2017年   12篇
  2016年   15篇
  2015年   24篇
  2014年   37篇
  2013年   32篇
  2012年   42篇
  2011年   32篇
  2010年   33篇
  2009年   33篇
  2008年   30篇
  2007年   37篇
  2006年   29篇
  2005年   34篇
  2004年   23篇
  2003年   22篇
  2002年   18篇
  2001年   7篇
  2000年   10篇
  1999年   10篇
  1998年   9篇
  1997年   7篇
  1996年   5篇
  1995年   8篇
  1994年   5篇
  1993年   4篇
  1992年   13篇
  1991年   12篇
  1990年   9篇
  1989年   7篇
  1988年   11篇
  1987年   3篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1981年   3篇
  1979年   5篇
  1978年   4篇
  1977年   2篇
  1975年   3篇
  1971年   2篇
  1968年   1篇
  1966年   1篇
  1961年   1篇
排序方式: 共有655条查询结果,搜索用时 265 毫秒
1.
Activity of key nitrogen assimilating enzymes was studied in developing grains of high-lysine opaque sorghum P-721 and normal sorghum CSV-5. The higher percentage of protein in opaque sorghum was mainly due to lower starch content since protein per grain was less than in CSV-5. During grain development, albufn and globulin decreased while prolafne and glutelin increased. Prolafne content in CSV-5 was higher than in opaque sorghum. Average nitrate reductase activity in flag and long leaf were similar in both the varieties. The nitrate reductase activity decreased during grain development. Glutamate dehydrogenase activity was higher during early development and lower at later stages in opaque sorghum than in CSV-5. Glutamate oxaloacetate transaminase activity was higher and glutamine synthetase lower in opaque sorghum than in CSV-5 grains during development. Glutamate synthase activity was higher in opaque sorghum up to day 20 and lower thereafter than in CSV-5. It is suggested that reduced activities of glutamine synthetase as well as glutamate synthase in opaque sorghum as compared to CSV-5 during later stages of development may restrict protein accumulation in the former.  相似文献   
2.
C Narasimhan  C S Lai 《Biochemistry》1989,28(12):5041-5046
Changes in local environment of the free sulfhydryl groups in plasma fibronectin upon adsorption of the protein to polystyrene beads have been examined by electron spin resonance (ESR) spin-label spectroscopy. The two free sulfhydryl groups per subunit of plasma fibronectin were modified chemically with an [15N, 2H]maleimide spin-label. For soluble fibronectin, both free sulfhydryl groups are shown to be in confined environments as evidenced from the labeled protein exhibiting a strongly immobilized ESR spectrum as described previously using [14N, 1H]maleimide spin-labels [Lai, C.-S., & Tooney, N. M. (1984) Arch. Biochem. Biophys. 228, 465-473]. When the labeled protein was adsorbed to the beads, half of the strongly immobilized component was found to convert into a weakly immobilized component, a result indicating that one of the two labeled sites becomes exposed and exhibit a fast tumbling motion. Experiments conducted using various spin-labeled fibronectin fragments suggest that the newly exposed labeled site is located between the DNA-binding and the cell-binding regions of the molecule. The data obtained indicate that, upon adsorption to polystyrene beads, plasma fibronectin undergoes a conformational change through which the buried free sulfhydryl group near the cell-binding region of the molecule is exposed. This observation may have important implications regarding the expression of cell adhesive properties of the fibronectin molecule.  相似文献   
3.
The nucleotide sequence of the fabA gene encoding beta-hydroxydecanoyl thioester dehydrase, a key enzyme of the unsaturated fatty acid synthesis pathway of Escherichia coli, has been determined by the dideoxynucleotide sequencing technique. Most of the sequence was obtained by sequencing intragenic insertions of the transposon, Tn1000, isolated in vivo. A synthetic primer complementary to a portion of the inverted repeat sequences at the ends of the transposon was used to prime DNA synthesis into the flanking fabA sequences. The gene is composed of 516 nucleotides (171 amino acid residues) encoding a protein with a molecular weight of 18,800. Approximately half of the derived amino acid sequence was confirmed by automated Edman sequencing of peptides obtained by cyanogen bromide cleavage. The active site histidine residue (His-70) has been identified by analysis of the peptides labeled by reaction with 14C-labeled 3-decynoyl-N-acetylcysteamine, a specific mechanism-activated inhibitor. A cysteine residue (Cys-69) adjacent to the active site histidine may play the role in catalysis previously assigned to a tyrosine residue. We also report a simplified purification process for the dehydrase beginning with extracts of a brain which greatly overproduces the enzyme.  相似文献   
4.
Streptococcal M protein, a dimeric alpha helical coiled-coil molecule, is an antigenically variable virulence factor on the surface of the bacteria. Our recent conformational analysis of the complete sequence of the M6 protein led us to propose a basic model for the M protein consisting of an extended central coiled-coil rod domain flanked by a variable N-terminal and a conserved C-terminal end domains. The central coiled-coil rod domain of M protein, which constitutes the major part of the M molecule, is made up of repeating heptads of the generalized sequence a-b-c-d-e-f-g, wherein a and d are predominantly apolar residues. Based on the differences in the heptad pattern of apolar residues and internal sequence homology, the central coiled-coil rod domain of M protein could be further divided into three subdomains I, II, and III. The streptococcal sequelae rheumatic fever (RF) and acute glomerulonephritis (AGN) have been known to be associated with distinct serotypes. Consistent with this, we observed that the AGN associated M49 protein exhibits a heptad motif that is distinct from the RF associated M5 and M6 proteins. Asn and Leu predominated in the a and d positions, respectively, in subdomain I of the M5 and M6 proteins, whereas apolar residues predominated in both these positions in the M49 protein. To establish whether the heptad motif of M49 is unique to this protein, or is a general characteristic of nephritis-associated serotypes, the amino acid sequence of M57, another nephritis-associated serotype, has now been examined. The gene encoding M57 was amplified by PCR, cloned into pUC19 vector, and sequenced. The C-terminal half of M57 is highly homologous to other M proteins (conserved region). In contrast, its N-terminal half (variable region) revealed no significant homology with any of the M proteins. Heptad periodicity analysis of the M57 sequence revealed that the basic design principles, consisting of distinct domains observed in the M6 protein, are also conserved in the M57 molecule. However, the heptad motif within the coiled-coil subdomain I of M57 was distinct from M5 and M6 but similar to M49. Similar analyses of the heptad characteristics within the reported sequences of M1, M12, and M24 proteins further confirmed the conservation of the overall architectural design of sequentially distinct M proteins. Furthermore, the heptad motif within subdomain I of the AGN-associated serotypes M1 and M12 was similar to M49 and M57, whereas that of the RF associated M24 was similar to the M5 and M6 proteins. These results clearly demonstrate a correlation between the heptad motifs within the distal coiled-coil subdomain of the M proteins from different streptococcal serotypes and their epidemiological association with the sequelae AGN and RF.  相似文献   
5.
Group A streptococcal Pep M5 protein, an antiphagocytic determinant of the bacteria, is an alpha-helical coiled-coil molecule, and exhibits significant sequence homology with tropomyosin and myosin, but to a lesser degree with other coiled-coil proteins. Moreover, Pep M5 is more homologous to myosin than to tropomyosin, and the homologies are more numerous between the C-terminal domain of the Pep M5 protein and the S2 fragment of myosin. The C-terminal domain of the Pep M5 protein exhibits extensive sequence identity with the C-terminal region of Pep M6 molecule, another M protein serotype. Thus, regions within two M protein serotypes are homologous to the S2 region of the myosin molecule. These observations are consistent with the immunological findings of other investigators and thus may explain some of the previously reported immunological cross-reactions between antigens of the group A streptococcus and mammalian heart tissue.  相似文献   
6.
7.
8.
9.
10.
Transgenic swine expressing human HbA contained only one of two types of the anticipated interspecies hybrids, namely H alpha 2 P beta 2 (H = human, P = swine). In an attempt to establish whether the absence of the swine alpha and human beta (P alpha 2 H beta 2) hybrid in vivo is a reflection of the lack of complementarity between the interspecies chains to generate appropriate interfaces, we have undertaken the in vitro assembly of swine alpha and human beta chimeric tetramer. In contrast to the in vivo transgenic swine system, in vitro the hybrid of swine alpha human beta chain is assembled readily and the hybrid exhibits normal cooperative oxygen binding. Both the swine alpha human beta and the human alpha swine beta interspecies hybrids are stable around neutral pH and do not segregate into parent tetramers even when mixed together. On the other hand, nearly complete exchange of P alpha chain of P alpha 2 H beta 2 hybrid occurs in the presence of H alpha chain at pH 6.0 and room temperature, resulting in the formation of HbA. However, very little of such an exchange reaction takes place at pH 7.0. These results suggest that the thermodynamic stability of P alpha 2 H beta 2 hybrid is lower compared to that of HbA. In contrast, P beta chain of H alpha 2 P beta 2 hybrid is refractory to exchange with H beta chain at pH 7.0 as well as at pH 6.0, suggesting that the stability of H alpha 2 P beta 2 is higher compared to that of HbA (H alpha 2 H beta 2). The swine alpha human beta chimeric Hb undergoes subunit exchange reaction with human alpha-chain in the presence of 0.9 M MgCl2, at pH 7.0. This demonstrates the lower thermodynamic stability of the intradimeric interactions of the heterodimer even at neutral pH. A synergistic coupling of the intra- and interdimeric interactions of the swine alpha and human beta chain heterodimer is essential for the thermodynamic stability of the chimeric Hb under the physiological conditions. Accordingly, we speculate that the lower thermodynamic stability of P alpha H beta heterodimer (compared to the homodimers H alpha H beta and P alpha P beta) facilitates its segregation into the homodimers by subunit exchange reaction involving either H alpha or P beta. This molecular aspect by itself or possibly along with other cellular aspects of the swine system results in the absence of P alpha 2 H beta 2 hybrid in transgenic swine expressing HbA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号